进程中的权限是如何操作的

任何一个进程都有父进程。所以,整个进程其实就是一棵进程树。而拥有同一父进程的所有进程都具有兄弟关系。

struct task_struct __rcu *real_parent; /* real parent process */
struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
struct list_head children;      /* list of my children */
struct list_head sibling;       /* linkage in my parent's children list */
  • parent 指向其父进程。当它终止时,必须向它的父进程发送信号。
  • children 表示链表的头部。链表中的所有元素都是它的子进程。
  • sibling 用于把当前进程插入到兄弟链表中。

进程中的权限是如何操作的_第1张图片

通常情况下,real_parent 和 parent 是一样的,但是也会有另外的情况存在。例如,bash 创建一个进程,那进程的 parent 和 real_parent 就都是 bash。如果在 bash 上使用 GDB 来 debug 一个进程,这个时候 GDB 是 parent,bash 是这个进程的 real_parent。

real_cred 就是说明谁能操作我这个进程,而 cred 就是说明我这个进程能够操作谁。这里 cred 的定义如下:

struct cred {
......
        kuid_t          uid;            /* real UID of the task */
        kgid_t          gid;            /* real GID of the task */
        kuid_t          suid;           /* saved UID of the task */
        kgid_t          sgid;           /* saved GID of the task */
        kuid_t          euid;           /* effective UID of the task */
        kgid_t          egid;           /* effective GID of the task */
        kuid_t          fsuid;          /* UID for VFS ops */
        kgid_t          fsgid;          /* GID for VFS ops */
......
        kernel_cap_t    cap_inheritable; /* caps our children can inherit */
        kernel_cap_t    cap_permitted;  /* caps we're permitted */
        kernel_cap_t    cap_effective;  /* caps we can actually use */
        kernel_cap_t    cap_bset;       /* capability bounding set */
        kernel_cap_t    cap_ambient;    /* Ambient capability set */
......
} __randomize_layout;

从这里的定义可以看出,大部分是关于用户和用户所属的用户组信息。

第一个是 uid 和 gid,注释是 real user/group id。一般情况下,谁启动的进程,就是谁的 ID。但是权限审核的时候,往往不比较这两个,也就是说不大起作用。

第二个是 euid 和 egid,注释是 effective user/group id。一看这个名字,就知道这个是起“作用”的。当这个进程要操作消息队列、共享内存、信号量等对象的时候,其实就是在比较这个用户和组是否有权限。

第三个是 fsuid 和 fsgid,也就是 filesystem user/group id。这个是对文件操作会审核的权限。

一般说来,fsuid、euid,和 uid 是一样的,fsgid、egid,和 gid 也是一样的。因为谁启动的进程,就应该审核启动的用户到底有没有这个权限。

capabilities,用位图表示权限,在 capability.h 可以找到定义的权限。

#define CAP_CHOWN            0
#define CAP_KILL             5
#define CAP_NET_BIND_SERVICE 10
#define CAP_NET_RAW          13
#define CAP_SYS_MODULE       16
#define CAP_SYS_RAWIO        17
#define CAP_SYS_BOOT         22
#define CAP_SYS_TIME         25
#define CAP_AUDIT_READ          37
#define CAP_LAST_CAP         CAP_AUDIT_READ

对于普通用户运行的进程,当有这个权限的时候,就能做这些操作;没有的时候,就不能做,这样粒度要小很多。

cap_permitted 表示进程能够使用的权限。但是真正起作用的是 cap_effective。cap_permitted 中可以包含 cap_effective 中没有的权限。一个进程可以在必要的时候,放弃自己的某些权限,这样更加安全。假设自己因为代码漏洞被攻破了,但是如果啥也干不了,就没办法进一步突破。

cap_inheritable 表示当可执行文件的扩展属性设置了 inheritable 位时,调用 exec 执行该程序会继承调用者的 inheritable 集合,并将其加入到 permitted 集合。但在非 root 用户下执行 exec 时,通常不会保留 inheritable 集合,但是往往又是非 root 用户,才想保留权限,所以非常鸡肋。

cap_bset,也就是 capability bounding set,是系统中所有进程允许保留的权限。如果这个集合中不存在某个权限,那么系统中的所有进程都没有这个权限。即使以超级用户权限执行的进程,也是一样的。

cap_ambient 是比较新加入内核的,就是为了解决 cap_inheritable 鸡肋的状况,也就是,非 root 用户进程使用 exec 执行一个程序的时候,如何保留权限的问题。当执行 exec 的时候,cap_ambient 会被添加到 cap_permitted 中,同时设置到 cap_effective 中。

进程中的权限是如何操作的_第2张图片

此文章为10月Day24学习笔记,内容来源于极客时间《趣谈Linux操作系统》,推荐该课程。

你可能感兴趣的:(Linux,1024程序员节,linux)