2020省选模拟训练1 排列(perm)多项式exp+EGF

这道题真的还是简单的一批.....   

我当时要是参加考试的话该多好(凭这一道题就能进前 5 了) 

十分显然的指数型生成函数. 

令 $f[i]$ 表示有 $i$ 个点的答案. 

然后显然有 $f[i]=\sum_{j=1}^{i}\binom{i}{j} \times \frac{j!}{j} \times f[i-j]$  

然后这个就是一个 EGF 的形式. 

令 $A(x)$ 表示只有一个环的时候的生成函数. 

然后有 $ans[i]=[x^i] \sum_{i} \frac{A^i(x)}{i!}$   

故 $ans[i]=[x^i] e^{A(x)}$ 

code:

#include 
#include 
#include 
#include 
#include 
#define ll long long
#define ull unsigned long long
using namespace std;
namespace IO
{
    char buf[100000],*p1,*p2;
    #define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
    int rd()
    {
        int x=0; char s=nc();
        while(s<'0') s=nc();
        while(s>='0') x=(((x<<2)+x)<<1)+s-'0',s=nc();
        return x;
    }   
    void print(int x) {if(x>=10) print(x/10);putchar(x%10+'0');}
    void setIO(string s)
    {
        string in=s+".in";
        string out=s+".out";
        freopen(in.c_str(),"r",stdin);
        // freopen(out.c_str(),"w",stdout);
    }
};
const int G=7;
const int N=400005;     
const int mod=950009857;                  
int A[N],B[N],w[2][N],mem[N*100],*ptr=mem,tmpa[N],tmpb[N],aa[N],bb[N];    
inline int qpow(int x,int y)
{
    int tmp=1;
    for(;y;y>>=1,x=(ll)x*x%mod)     if(y&1) tmp=(ll)tmp*x%mod;
    return tmp;
}
inline int INV(int a) { return qpow(a,mod-2); }  
inline void ntt_init(int len)
{
    int i,j,k,mid,x,y;
    w[1][0]=w[0][0]=1,x=qpow(G,(mod-1)/len),y=qpow(x,mod-2);
    for (i=1;ik)    swap(a[i],a[k]);
        for(j=len>>1;(k^=j)>=1);
    }
    for(mid=1;mid>1,la);
    int l=len<<1,i;
    memset(A,0,l*sizeof(A[0]));        
    memset(B,0,l*sizeof(A[0]));
    memcpy(A,a,min(la,len)*sizeof(a[0]));                                                
    memcpy(B,b,len*sizeof(b[0]));       
    ntt_init(l);
    NTT(A,l,1),NTT(B,l,1);
    for(i=0;i>1,la);          
    for(i=0;i>1);++i) aa[i]=b[i];       
    get_ln(b,bb,len,len>>1);                                          
    for(i=0;i=la?0:a[i]))%mod;                          
    bb[0]=(bb[0]+1)%mod;
    ntt_init(l);
    NTT(aa,l,1),NTT(bb,l,1);
    for(i=0;i=b.len)   c.a[i]=a[i];
            else c.a[i]=(a[i]-b.a[i]+mod)%mod;
        }
        return c;
    }
    poly operator/(poly u)
    {
        int n=len,m=u.len,l=1;
        while(l<(n-m+1)) l<<=1;                     
        rev(),u.rev();      
        poly v=u.Inv(l);
        v.get_mod(n-m+1);  
        poly re=(*this)*v;
        rev(),u.rev();
        re.get_mod(n-m+1);   
        re.rev();
        return re;
    }
    poly operator%(poly u)
    {
        poly re=(*this)-u*(*this/u);  
        re.get_mod(u.len-1); 
        return re;
    }               
}; 
#define MAX 400003 
int fac[N],in[N],g[N],bu[N];    
void init() 
{
    int i,j;  
    fac[0]=in[0]=1;      
    for(i=1;i

  

你可能感兴趣的:(2020省选模拟训练1 排列(perm)多项式exp+EGF)