GNSS定位导航

GNSS 分为 Beidou、GPS、Glonass、Galileo

车载定位包括:GNSS,IMU,RTK,DR

 

1、GNSS

GlobalNavigation Satellite System 全球导航卫星系统

2、定位系统的三部分

空间星座部分:获取卫星运动轨迹,确定用户接收机的空间位置

地面监控部分(监测站、主控站、注入站):监测卫星状态、时钟维护、导航电文播发等

用户设备部分:用户接收机的主要任务是跟踪可见卫星,对接收到的卫星无线电信号经过数据处理后获得定位所需要的测量值和导航信息,最后完成对用户的定位运算和可能的导航任务。

3、导航定位方式

(1)卫星导航定位

通过获取至少四颗卫星的星历,计算出接收机的经度、纬度、海拔。

定位算法一般可以采用:最小二乘法定位算法,卡尔曼滤波定位算法等。

(2)惯性导航是通过高精度的陀螺和加速计测量运动载体的角速率和加速度信息,经过积分运算得到运动载体的加速度、位置、姿态和航向等导航参数的自主式导航系统,产生的导航信息连续性好且噪声低、数据更新率高、短期精度好、稳定性好。

4、定位的标准

(1)用户接收机的定位精度

(2)用户接收机首次定位用时

5、GPS/BEIDOU/GLONASS/GALILEO

GPS——码分多址(CDMA)的扩频通信系统。

GLONASS——频分多址(FDMA)

GALILEO——码分多址(CDMA)

 

Beidou GPS Glonass Galileo

主动式、双向型定位系统

北斗接收机可以接收和发射信号

失去了无线隐蔽性

北斗的服务采用询问/应答形式

北斗的接收机:体积、重量、价格、功耗等方面

接受型、被动型、单向型定位系统

持续不断地向地面发射信号

GPS接收机接收信号而不需发射信号

   

码分多址:即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端使用完全相同的 伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的 窄带信号即解扩,以实现信息通信。

频分多址:根据载波频率的大小不同来区分来自不同卫星的信号。

6、伪码即是伪随机码。

所谓"随机码",就是无论这个码有多长都不会出现循环的现象,而"伪随机码"在码长达到一定程度时会从其第一位开始循环,由于出现的循环长度相当大,例如CDMA采用42的伪随机码,重复的可能性为4.4万亿分之一,所以可以当成随机码使用。

在计算机、通信系统中我们采用的随机数、随机码均为伪随机数、伪随机码。

7、OTDOA是根据三个基站与移动终端信号传播的时间差值进行定位的技术。

8、定位关键指标

观测量、信号强度、能搜上来哪些星、冷/温/热启动、单模/多模

时间的精度,纳秒级

捕获灵敏度/持续跟踪灵敏度,dBm

TTFF(首次定位时间) 68% 95% MAX AVG

CEP (定位精度) 68%<=50m  95%<=150m  MAX  AVG

LAST_CEP    68%<=50m  95%<=150m  MAX  AVG

CN0,dB-Hz

频差(ppm)

钟源(ppb/s)

定位点、失定位点

功耗与性能

场景影响

 

 

各国卫星导航系统比较(北斗、伽利略、GLONASS、GPS)

卫星导航系统 卫星数量 定位精度 系统进展 研制国家
北斗系统 35颗 10米 2007年发射两颗北斗导航卫星,2008年左右满足中国及周边地区用户需求。 中国
伽利略系统 30颗 小于1米 1999年欧盟公布了“伽利略”计划,现在“伽利略”系统正在建设中。 欧盟
格洛纳斯(GLONASS)系统 24颗 10~15米 目前GLONASS系统已有17颗卫星在轨运行,计划2008年全部部署到位。 俄罗斯
GPS系统 24颗 5米 1994年,GPS卫星导航系统己布设完成。现在正研制第二代GPS系统。 美国

 

北斗卫星导航系统简介
       卫星导航系统是重要的空间基础设施,为人类带来了巨大的社会经济效益。中国作为发展中国家,拥有广阔的领土和海域,高度重视卫星导航系统的建设,努力探索和发展拥有自主知识产权的卫星导航定位系统。

  2000年以来,中国已成功发射了4颗“北斗导航试验卫星”,建成北斗导航试验系统(第一代系统)。这个系统具备在中国及其周边地区范围内的定位、授时、报文和GPS广域差分功能,并已在测绘、电信、水利、交通运输、渔业、勘探、森林防火和国家安全等诸多领域逐步发挥重要作用。

  中国正在建设的北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨道卫星组成,提供两种服务方式,即开放服务和授权服务(属于第二代系统)。开放服务是在服务区免费提供定位、测速和授时服务,定位精度为10米,授时精度为50纳秒,测速精度0.2米/秒。授权服务是向授权用户提供更安全的定位、测速、授时和通信服务以及系统完好性信息。

  中国计划2007年初发射两颗北斗导航卫星,2008年左右满足中国及周边地区用户对卫星导航系统的需求,并进行系统组网和试验,逐步扩展为全球卫星导航系统。

伽利略卫星导航系统简介
        数量:30颗中高度圆轨道卫星组成,27颗为工作卫星,3颗为候补;

  轨道:高度为24126公里,位于3个倾角为56度的轨道平面内;

  精度:最高精度小于1米;

  用途:主要为民用;

  1999年2月10日,欧盟执行机构欧洲委员会(EC)公布了欧洲导航卫星系统“伽利略”计划,该系统是与美国全球导航定位系统(GPS)和俄罗斯的GLONASS系统兼容的民用全球定位卫星系统。欧盟之所以进行“伽利略”计划,主要是为了摆脱对美国GPS系统的依赖,打破美国对全球卫星导航定位产业的垄断,在使欧洲获得工业和商业效益的同时,赢得建立欧洲共同安全防务体系的条件。

  其实,欧空局(ESA)早在1990年就决定研制“全球导航卫星系统(GNSS)”, GNSS分为两个阶段,第一阶段是建立一个与美国GPS系统、俄罗斯GLONASS系统、以及三种区域增强系统均能相容的第一代全球导航卫星系统(GNSS-1),第二阶段是建立一个完全独立于GPS系统和GLONASS系统之外的第二代全球导航卫星系统(GNSS-2)。由于GNSS-1主要是利用GPS等已经建成的系统,因此其主要工作是在欧洲建立30座地面站和4个主控制中心,系统将在2002年部署完毕,2004年完成运营试验。欧洲的长远目标是拥有自己的独立的全球导航卫星系统,即GNSS-2,也就是现在的“伽利略”系统。

  “伽利略”计划由欧洲委员会和欧空局共同负责。欧洲委员会负责政治领域和高层次的任务需求,其中包括对系统总体结构、经济收益和用户需求的研究。欧空局负责空间分系统及相关地面系统的确定、发展和在轨鉴定。

  “伽利略”系统的批准实施,使得欧洲继“空中客车”和“阿里安”火箭之后,又将拥有自己独立的导航卫星系统,这是欧洲力图独立于美国的又一个重大决定,具有重大政治意义。

  欧盟称,“伽利略”计划是在“技术、经济和政治上的挑战”。小心翼翼地将“政治”放在最后,自然是要减少“伽利略”的政治色彩。欧盟还表示,“伽利略”系统是纯民用的,不用于军事,也不干涉美国的GPS,甚至是GPS的有效补充,也是为了避免美国的反感。但是“伽利略”计划既已启动,其政治意义也就不言自明。

  在“伽利略”系统的筹建过程中,曾一再受到美国的阻挠,欧洲内部的意见也一度产生严重分歧,系统计划几乎流产。但欧盟委员会及欧洲航天局非常明确地向成员国指出,早在20世纪60年代,美国就曾阻止欧洲拥有自己的航天发射能力,许诺免费为欧洲发射卫星,但欧洲顶住了诱惑和干扰,开发了自己的“阿里安”火箭,使欧洲今天不但拥有了完全独立的卫星发射系统,而且在国际航天发射市场上占有了绝对的优势。欧盟委员会指出,现在的情况与当初何其相似,所不同是如果没有自己独立的卫星导航定位系统,欧洲防务在20到30年以后将完全失去自主,欧洲也将最终沦为美国的附庸。

  在“伽利略”系统问题上,欧洲内部从意见分歧到最后统一,这足以表明尽管欧洲国家各有各的考虑,但面对美国昭然若揭的霸权野心,其他矛盾都可以暂退其后。欧洲人已经达成共识:对欧洲的安全性起关键作用的导航系统如果不受欧洲控制,欧洲的主权和安全就有严重问题。因为世界上没有永远的敌人,也没有永远的盟友,盟友有时会变成敌人。

  “伽利略”计划很可能会成为欧洲人安全合作的起点,在军事应用上发挥类似GPS的功能。“伽利略”系统的安全保障功能绝不仅仅是一个推销军用接收机的问题,而是欧洲各国需要拥有一个既能用于欧洲防务体系,又能为欧洲各国军方使用的全球导航卫星系统。欧盟“伽利略”计划军事应用的具体设想是:在发生冲突和战争期间,迅速将L1和L2频率的两级服务转为军用业务,而第3级L3频率仍保留给民航等特殊用户。欧盟将采用不同类型的接收机控制导航信号及其应用。

格洛纳斯卫星导航系统简介

        数量:24颗卫星组成;

  精度:10米左右;

  用途:军民两用;

  进展:目前已有17颗卫星在轨运行,计划2008年全部部署到位。

  2003年9月24日,是俄联邦政府总统正式宣布俄罗斯GLONASS系统开始服役的十周年纪念日。

  事实上,GLONASS在1993年只是具备了初始作战能力。直到1995年末1996年初GLONASS才真正实现了完整星座的部署。GLONASS的第一颗卫星是1982年发射入轨的,同年还发射了两颗同轨道(19100千米)的Etalon geodetic卫星,对规划的高度和倾角的地球引力场特性进行全面表征。原计划1991年建成完整的工作系统。

  GLONASS的工作卫星有21颗,分布在3个轨道平面上,同时有三颗备份星。这三个轨道平面两两相隔120度,同平面内的卫星之间相隔45度。每颗卫星都在19100千米高、64.8度倾角的轨道上运行。每颗卫星需要11小时15分钟完成一个轨道周期。

  地面控制部分全部都位于前苏联领土境内,地面控制中心和时间标准位于莫斯科,遥测和跟踪站位于圣彼得堡、Ternopol、Eniseisk和共青城。

  1960年晚些时候,俄罗斯军方确认需要一个卫星无线电导航系统(SRNS))用于规划中的新一代弹道导弹的精确导引。当时已有的Tsiklon卫星导航系统接收站需要好几分钟的观测才能确定一个位置,因此不能达到导航定位的目的。1968-1969年,国防部、科学院和海军的一些研究所联合起来要为海、陆、空、天武装力量建立一个单一的解决方案。1970年这个系统的需求文件编制完成。进一步研究之后,在1976年,前苏联颁布法令建立GLONASS(Global'naya Navigatsionnaya Sputnikovaya Sistema)。

  GLONASS卫星星座基本上一直处于降效运行状态,只有8颗卫星是全功能工作的。90年代曾经制定过一个GLONASS星座渐进增强计划,企图在2001年开始有12颗全功能工作的卫星,但根据最新情报,目前仍然只有8颗全功能工作的卫星。

  俄罗斯目前正在着手GLONASS系统现代化的工作。俄罗斯太空部队打算开始进行新一代GLONASS-M计划的飞行试验,发射将在2004年左右进行。新型GLONASS-M卫星除了将有更长的设计寿命(从现行的3年提高到7-8年)以外,还将具有更好的讯号特性。俄罗斯还计划要在将来转变到低质量(MASS)第三代GLONASS-K卫星,确保卫星工作寿命在10年以上。

GPS卫星导航系统简介

全球定位系统(GPS)是本世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。   全球定位系统由三部分构成:(1)地面控制部分,由主控站(负责管理、协调整个地面控制系统的工作)、地面天线(在主控站的控制下,向卫星注入寻电文)、监测站(数据自动收集中心)和通讯辅助系统(数据传输)组成;(2)空间部分,由24颗卫星组成,分布在6个道平面上;(3)用户装置部分,主要由GPS接收机和卫星天线组成。

  全球定位系统的主要特点:(1)全天候;(2)全球覆盖;(3)三维定速定时高精度;(4)快速省时高效率:(5)应用广泛多功能。  全球定位系统的主要用途:(1)陆地应用,主要包括车辆导航、应急反应、大气物理观测、地球物理资源勘探、工程测量、变形监测、地壳运动监测、市政规划控制等;(2)海洋应用,包括远洋船最佳航程航线测定、船只实时调度与导航、海洋救援、海洋探宝、水文地质测量以及海洋平台定位、海平面升降监测等;(3)航空航天应用,包括飞机导航、航空遥感姿态控制、低轨卫星定轨、导弹制导、航空救援和载人航天器防护探测等。

  GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。

  经过20余年的实践证明,GPS系统是一个高精度、全天候和全球性的无线电导航、定位和定时的多功能系统。 GPS技术已经发展成为多领域、多模式、多用途、多机型的国际性高新技术产业。

  GPS原理

  24颗GPS卫星在离地面1万2千公里的高空上,以12小时的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。

  由于卫星的位置精确可知,在GPS观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。

  事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。

  由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,以及人为的SA保护政策,使得民用GPS的定位精度只有100米。为提高定位精度,普遍采用差分GPS(DGPS)技术,建立基准站(差分台)进行GPS观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分GPS,定位精度可提高到5米。

  GPS前景

  由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。

  随着冷战结束和全球经济的蓬勃发展,美国政府宣布2000年至2006期间,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到20米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。据有关专家预测,在美国,单单是汽车GPS导航系统,2000年后的市场将达到30亿美元,而在我国,汽车导航的市场也将达到50亿元人民币。可见,GPS技术市场的应用前景非常可观。

你可能感兴趣的:(定位)