stream
执行顺序
数据流操作要么是衔接操作,要么是终止操作。
衔接操作返回数据流,所以我们可以把多个衔接操作不使用分号来链接到一起。 终止操作无返回值,或者返回一个不是流的结果。在上面的例子中,filter、map和sorted都是衔接操作,而forEach是终止操作。
衔接操作延迟性
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return true;
});
复制代码
执行这段代码时,不向控制台打印任何东西。这是因为衔接操作只在终止操作调用时被执行。
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return true;
})
.forEach(s -> System.out.println("forEach: " + s));
复制代码
上述代码执行输出结果为:
filter: d2
forEach: d2
filter: a2
forEach: a2
filter: b1
forEach: b1
filter: b3
forEach: b3
filter: c
forEach: c
复制代码
方法会在数据流的所有元素上,一个接一个地水平执行所有操作。但是每个元素在调用链上垂直移动。第一个字符串"d2"首先经过filter然后是forEach,执行完后才开始处理第二个字符串"a2"。
Stream.of("d2", "a2", "b1", "b3", "c")
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.anyMatch(s -> {
System.out.println("anyMatch: " + s);
return s.startsWith("A");
});
// map: d2
// anyMatch: D2
// map: a2
// anyMatch: A2
复制代码
只要提供的数据元素满足了谓词,anyMatch操作就会返回true。对于第二个传递"A2"的元素,它的结果为真。由于数据流的链式调用是垂直执行的,map这里只需要执行两次。所以map会执行尽可能少的次数,而不是把所有元素都映射一遍。
Stream.of("d2", "a2", "b1", "b3", "c")
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("A");
})
.forEach(s -> System.out.println("forEach: " + s));
// map: d2
// filter: D2
// map: a2
// filter: A2
// forEach: A2
// map: b1
// filter: B1
// map: b3
// filter: B3
// map: c
// filter: C
复制代码
就像你可能猜到的那样,map和filter会对底层集合的每个字符串调用五次,而forEach只会调用一次。 如果我们调整操作顺序,将filter移动到调用链的顶端,就可以极大减少操作的执行次数:
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("a");
})
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.forEach(s -> System.out.println("forEach: " + s));
// filter: d2
// filter: a2
// map: a2
// forEach: A2
// filter: b1
// filter: b3
// filter: c
复制代码
sorted
Stream.of("d2", "a2", "b1", "b3", "c")
.sorted((s1, s2) -> {
System.out.printf("sort: %s; %s\n", s1, s2);
return s1.compareTo(s2);
})
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("a");
})
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.forEach(s -> System.out.println("forEach: " + s));
sort: a2; d2
sort: b1; a2
sort: b1; d2
sort: b1; a2
sort: b3; b1
sort: b3; d2
sort: c; b3
sort: c; d2
filter: a2
map: a2
forEach: A2
filter: b1
filter: b3
filter: c
filter: d2
复制代码
sorted是水平执行的且是有状态的。
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> {
System.out.println("filter: " + s);
return s.startsWith("a");
})
.sorted((s1, s2) -> {
System.out.printf("sort: %s; %s\n", s1, s2);
return s1.compareTo(s2);
})
.map(s -> {
System.out.println("map: " + s);
return s.toUpperCase();
})
.forEach(s -> System.out.println("forEach: " + s));
// filter: d2
// filter: a2
// filter: b1
// filter: b3
// filter: c
// map: a2
// forEach: A2
复制代码
上例中sorted没有执行,因为filter把数据减少到只有一条。
复用数据流
Stream stream =
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a"));
stream.anyMatch(s -> true); // ok
stream.noneMatch(s -> true); // exception
复制代码
要克服这个限制,我们需要为每个我们想要执行的终止操作创建新的数据流调用链。例如,我们创建一个数据流供应器,来构建新的数据流,并且设置好所有衔接操作:
Supplier> streamSupplier =
() -> Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a"));
streamSupplier.get().anyMatch(s -> true); // ok
streamSupplier.get().noneMatch(s -> true); // ok
复制代码
高级操作
据流执行大量的不同操作。我们已经了解了一些最重要的操作,例如filter和map。我将它们留给你来探索所有其他的可用操作。下面让我们深入了解一些更复杂的操作:collect、flatMap和reduce。 Person类
package cn.duming.stream;
import java.util.Arrays;
import java.util.List;
class Person {
String name;
int age;
Person(String name, int age) {
this.name = name;
this.age = age;
}
@Override
public String toString() {
return name;
}
public static void main(String [] args){
List persons =
Arrays.asList(
new Person("Max", 18), new Person("Peter", 23),
new Person("Pamela", 23), new Person("David", 12));
}
}
复制代码
collect
collect是非常有用的终止操作,将流中的元素存放在不同类型的结果中,例如List、Set或者Map。collect接受收集器(Collector),它由四个不同的操作组成:供应器(supplier)、累加器(accumulator)、组合器(combiner)和终止器(finisher)。这在开始听起来十分复杂,但是Java8通过内置的Collectors类支持多种内置的收集器。所以对于大部分常见操作,你并不需要自己实现收集器。
List filtered =
persons
.stream()
.filter(p -> p.name.startsWith("P"))
.collect(Collectors.toList());
System.out.println(filtered); // [Peter, Pamela]
复制代码
就像你看到的那样,它非常简单,只是从流的元素中构造了一个列表。如果需要以Set来替代List,只需要使用Collectors.toSet()就好了。
下面的例子按照年龄对所有人进行分组:
Map> personsByAge = persons
.stream()
.collect(Collectors.groupingBy(p -> p.age));
personsByAge
.forEach((age, p) -> System.out.format("age %s: %s\n", age, p));
Connected to the target VM, address: '127.0.0.1:54423', transport: 'socket'
age 18: [Max]
age 23: [Peter, Pamela]
age 12: [David]
复制代码
收集器十分灵活。你也可以在流的元素上执行聚合,例如,计算所有人的平均年龄:
Double averageAge = persons
.stream()
.collect(Collectors.averagingInt(p -> p.age));
System.out.println(averageAge); // 19.0
复制代码
如果你对更多统计学方法感兴趣,概要收集器返回一个特殊的内置概要统计对象,所以我们可以简单计算最小年龄、最大年龄、算术平均年龄、总和和数量。
IntSummaryStatistics ageSummary =
persons
.stream()
.collect(Collectors.summarizingInt(p -> p.age));
System.out.println(ageSummary);
// IntSummaryStatistics{count=4, sum=76, min=12, average=19.000000, max=23}
复制代码
下面的例子将所有人连接为一个字符串:
String phrase = persons
.stream()
.filter(p -> p.age >= 18)
.map(p -> p.name)
.collect(Collectors.joining(" and ", "In Germany ", " are of legal age."));
System.out.println(phrase);
复制代码
flatMap
我们已经了解了如何通过使用map操作,将流中的对象转换为另一种类型。map有时十分受限,因为每个对象只能映射为一个其它对象。但如何我希望将一个对象转换为多个或零个其他对象呢?flatMap这时就会派上用场。
flatMap将流中的每个元素,转换为其它对象的流。所以每个对象会被转换为零个、一个或多个其它对象,以流的形式返回。这些流的内容之后会放进flatMap所返回的流中。
在我们了解flatMap如何使用之前,我们需要相应的类型体系:
package cn.duming.stream;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;
public class FlatMapDemo {
public static void main(String [] args){
List foos = new ArrayList<>();
// create foos
IntStream
.range(1, 4)
.forEach(i -> foos.add(new Foo("Foo" + i)));
// create bars
foos.forEach(f ->
IntStream
.range(1, 4)
.forEach(i -> f.bars.add(new Bar("Bar" + i + " <- " + f.name))));
System.out.println(foos);
}
}
class Foo {
String name;
List bars = new ArrayList<>();
Foo(String name) {
this.name = name;
}
}
class Bar {
String name;
Bar(String name) {
this.name = name;
}
}
复制代码
现在我们拥有了含有三个foo的列表,每个都含有三个bar。
flatMap接受返回对象流的函数。所以为了处理每个foo上的bar对象,我们需要传递相应的函数:
foos.stream()
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name));
复制代码
上诉代码整体可以使用如下流水线代替
IntStream.range(1, 4)
.mapToObj(i -> new Foo("Foo" + i))
.peek(f -> IntStream.range(1, 4).mapToObj(i -> new Bar("Bar" + i + " <- "+ f.name)).forEach(f.bars::add))
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name));
复制代码
reduce
归约操作将所有流中的元素组合为单一结果。Java8支持三种不同类型的reduce方法。第一种将流中的元素归约为流中的一个元素。让我们看看我们如何使用这个方法来计算出最老的人:
persons.stream()
.reduce((p1, p2) -> p1.age > p2.age ? p1 : p2)
.ifPresent(System.out::println); // Pamela
复制代码
reduce方法接受BinaryOperator积累函数。它实际上是两个操作数类型相同的BiFunction。BiFunction就像是Function,但是接受两个参数。示例中的函数比较两个人的年龄,来返回年龄较大的人。 第二个reduce方法接受一个初始值,和一个BinaryOperator累加器。这个方法可以用于从流中的其它Person对象中构造带有聚合后名称和年龄的新Person对象。
Person result = persons
.stream()
.reduce(new Person("", 0), (p1, p2) -> {
p1.age += p2.age;
p1.name += p2.name;
return p1;
});
System.out.format("name=%s; age=%s", result.name, result.age);
name=MaxPeterPamelaDavid; age=76
复制代码
第三个reduce对象接受三个参数:初始值,BiFunction累加器和BinaryOperator类型的组合器函数。由于初始值的类型不一定为Person,我们可以使用这个归约函数来计算所有人的年龄总和。:
Integer ageSum = persons
.stream()
.reduce(0, (sum, p) -> sum += p.age, (sum1, sum2) -> sum1 + sum2);
System.out.println(ageSum); // 76
复制代码
具体执行过程如下所示:
Integer ageSum = persons
.stream()
.reduce(0, (sum, p) -> {
System.out.format("accumulator: sum=%s; person=%s\n", sum, p);
return sum += p.age;
}, (sum1, sum2) -> {
System.out.format("combiner: sum1=%s; sum2=%s\n", sum1, sum2);
return sum1 + sum2;
});
// accumulator: sum=0; person=Max
// accumulator: sum=18; person=Peter
// accumulator: sum=41; person=Pamela
// accumulator: sum=64; person=David
复制代码
参考
知乎java8专栏 java8 stream