Rockchip UART (Universal Asynchronous Receiver/Transmitter) 基于16550A串口标准,完整模块支持以下功能:
在Linux kernel 中,使用8250串口通用驱动,以下为主要驱动文件:
drivers/tty/serial/8250/8250_core.c # 8250串口驱动核心 drivers/tty/serial/8250/8250_dw.c # Synopsis DesignWare 8250串口驱动 drivers/tty/serial/8250/8250_dma.c # 8250串口DMA驱动 drivers/tty/serial/8250/8250_port.c # 8250串口端口操作 drivers/tty/serial/8250/8250_early.c # 8250串口early console驱动
SDK中提供的UART默认配置已经使用了8250驱动我们就不需要修改
rk平台的设备树修改路径都是在kernel\arch\arm64\boot\dts\rockchip下面,具体哪个文件根据对应开发板来决定,通常描述设备硬件配置在rkxxxx.dtsi中,比如在rk3588s.dtsi中:
uart2: serial@feb50000 {
compatible = "rockchip,rk3588-uart", "snps,dw-apb-uart";
reg = <0x0 0xfeb50000 0x0 0x100>;
interrupts = ;
clocks = <&cru SCLK_UART2>, <&cru PCLK_UART2>;
clock-names = "baudclk", "apb_pclk";
reg-shift = <2>;
reg-io-width = <4>;
dmas = <&dmac0 10>, <&dmac0 11>;
pinctrl-names = "default";
pinctrl-0 = <&uart2m1_xfer>;
status = "disabled";
};
假入我们想使用w3开发板上40PIN上的uart7 我们在dts可以使用如下配置打开
&uart7 {
status = "okay";
pinctrl-names = "default";
pinctrl-0 = <&uart7m1_xfer>;
};
Rockchip UART作为控制台,使用fiq_debugger流程。 在dts中fiq_debugger节点配置如下。由于fiq_debugger和普通串口互斥,在使能fiq_debugger节点后必须禁用对应的普通串口uart节点。
chosen: chosen {
bootargs = "earlycon=uart8250,mmio32,0xfe660000 console=ttyFIQ0";
};
fiq-debugger {
compatible = "rockchip,fiq-debugger";
rockchip,serial-id = <2>;
rockchip,wake-irq = <0>;
/* If enable uart uses irq instead of fiq */
rockchip,irq-mode-enable = <1>;
rockchip,baudrate = <1500000>; /* Only 115200 and 1500000 */
interrupts = ;
pinctrl-names = "default";
pinctrl-0 = <&uart2m0_xfer>;
status = "okay";
};
&uart2 {
status = "disabled";
};
普通串口设备将会根据dts中的aliase来对串口进行编号,对应注册成ttySx设备。注册的节点为/dev/ttyS4,命名规则是通过dts中的aliases来的。
aliases {
serial0 = &uart0;
serial1 = &uart1;
serial2 = &uart2;
serial3 = &uart3;
}
对应uart0注册为ttyS0,uart0注册为ttyS1,如果需要把uart3注册成ttyS1,可以进行以下修改
serial1 = &uart3;
serial3 = &uart1;
Rockchip UART打印通常包括DDR阶段、Miniloader阶段、TF-A (Trusted Firmware-A)阶段、OP-TEE阶段、Uboot阶段和Kernel阶段,我们平时主要关注的是uboot阶段和kernel阶段的打印,在这两个阶段我们可以尝试关闭所有打印或切换所有打印到其他UART,RK平台默认的调试串口是uart2_m0这一组引脚,假如现在我将打印换成其他串口,可以尝试以下做法。
DDR Loader中关闭或切换打印,需要修改DDR Loader中的UART打印配置,修改文件rkbin/tools/ddrbin_param.txt中的以下参数:
uart id= # UART控制器id,配置为0xf为关闭打印 uart iomux= # 复用的IOMUX引脚 uart baudrate= # 115200 or 1500000
修改完成后,使用以下命令重新生成ddr.bin固件。
./ddrbin_tool ddrbin_param.txt rk3588_ddr_lp4_2112MHz_lp5_2736MHz_v1.09.bin
Uboot中关闭打印,需要在menuconfig中,打开配CONFIG_DISABLE_CONSOLE,保存到.config文件 Uboot中切换打印,由传参机制决定,不需要进行额外修改。uboot解析传参机制相关代码在arch/arm/mach-rockchip/board.c的board_init_f_init_serial()函数中。
去掉打印需要在menuconfig中,关闭配置CONFIG_SERIAL_8250_CONSOLE。
Device Drivers ---> Character devices ---> Serial drivers ---> [ ]Console on 8250/16550 and compatible serial port
在dts配置中找到类似以下内容,并去掉UART基地址和console相关配置参数
chosen: chosen {
bootargs = "earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 irqchip.gicv3_pseudo_nmi=0 root=PARTUUID=614e0000-0000 rw rootwait";
};
将0xfeb50000 console=ttyFIQ0 去掉,然后找到fiq-debugger节点,修改serial-id为0xffffffff,去掉UART引脚复用相关配置。注意,需要保持fiq�debugger节点使能,保持fiq-debugger流程系统才能正常启动
fiq_debugger: fiq-debugger {
compatible = "rockchip,fiq-debugger";
rockchip,serial-id = <0xffffffff>;
rockchip,wake-irq = <0>;
/* If enable uart uses irq instead of fiq */
rockchip,irq-mode-enable = <1>;
rockchip,baudrate = <1500000>; /* Only 115200 and 1500000 */
interrupts = ;
status = "okay";
};
切换打印串口例如将Kernel打印从UART2切换到UART3,在dts配置中找到类似以下内容,将UART基地址由UART2改为UART3.
bootargs = "earlycon=uart8250,mmio32,0xfe670000 console=ttyFIQ0";
0xfe670000是UART3基地址,然后找到fiq-debugger节点,修改serial-id为3,修改UART3引脚复用配置pinctrl-0 = <&uart3m0_xfer>。注意,同时需要将切换为打印串口的UART3作为普通串口的节点禁用。
在开发板上跑一套应用程序,可以发送数据,可以接收数据,测试方法可以短接TX_RX
#include
#include
#include
#include
#include
#include
#include
#include
#include
int read_data(int fd, void *buf, int len);
int write_data(int fd, void *buf, int len);
int setup_port(int fd, int baud, int databits, int parity, int stopbits);
void print_usage(char *program_name);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t data_ready = PTHREAD_COND_INITIALIZER;
int data_available = 0;
void *read_thread(void *arg) {
int fd = *(int *)arg;
char buffer[1024]; // 存储读取的数据
while (1) {
int bytes_read = read_data(fd, buffer, sizeof(buffer));
if (bytes_read > 0) {
printf("Read Thread: Read %d bytes: %s\n", bytes_read, buffer);
} else {
// 处理读取错误或设备关闭的情况
break;
}
}
pthread_exit(NULL);
}
void *write_thread(void *arg) {
int fd = *(int *)arg;
char input[1024]; // 存储用户输入的数据
while (1) {
printf("Enter data to write (or 'q' to quit): ");
fgets(input, sizeof(input), stdin);
if (strcmp(input, "q\n") == 0 || strcmp(input, "Q\n") == 0) {
// 用户输入 'q' 或 'Q',退出循环
break;
}
int len = strlen(input);
int bytes_written = write_data(fd, input, len);
if (bytes_written > 0) {
printf("Write Thread: Wrote %d bytes: %s\n", bytes_written, input);
}
}
pthread_exit(NULL);
}
int main(int argc, char *argv[]) //./a.out /dev/ttyS4 115200 8 0 1
{
int fd;
int baud;
int len;
int count;
int i;
int databits;
int stopbits;
int parity;
if (argc != 6) {
print_usage(argv[0]);
return 1;
}
baud = atoi(argv[2]);
if ((baud < 0) || (baud > 921600)) {
fprintf(stderr, "Invalid baudrate!\n");
return 1;
}
databits = atoi(argv[3]);
if ((databits < 5) || (databits > 8)) {
fprintf(stderr, "Invalid databits!\n");
return 1;
}
parity = atoi(argv[4]);
if ((parity < 0) || (parity > 2)) {
fprintf(stderr, "Invalid parity!\n");
return 1;
}
stopbits = atoi(argv[5]);
if ((stopbits < 1) || (stopbits > 2)) {
fprintf(stderr, "Invalid stopbits!\n");
return 1;
}
fd = open(argv[1], O_RDWR, 0);
if (fd < 0) {
fprintf(stderr, "open <%s> error %s\n", argv[1], strerror(errno));
return 1;
}
if (setup_port(fd, baud, databits, parity, stopbits)) {
fprintf(stderr, "setup_port error %s\n", strerror(errno));
close(fd);
return 1;
}
pthread_t read_tid, write_tid;
int ret;
// 创建读取线程
ret = pthread_create(&read_tid, NULL, read_thread, &fd);
if (ret != 0) {
fprintf(stderr, "Failed to create read thread\n");
return 1;
}
// 创建写入线程
ret = pthread_create(&write_tid, NULL, write_thread, &fd);
if (ret != 0) {
fprintf(stderr, "Failed to create write thread\n");
return 1;
}
// 等待读取线程和写入线程结束
pthread_join(read_tid, NULL);
pthread_join(write_tid, NULL);
close(fd);
return 0;
}
static int baudflag_arr[] = {
B921600, B460800, B230400, B115200, B57600, B38400,
B19200, B9600, B4800, B2400, B1800, B1200,
B600, B300, B150, B110, B75, B50
};
static int speed_arr[] = {
921600, 460800, 230400, 115200, 57600, 38400,
19200, 9600, 4800, 2400, 1800, 1200,
600, 300, 150, 110, 75, 50
};
int speed_to_flag(int speed)
{
int i;
for (i = 0; i < sizeof(speed_arr)/sizeof(int); i++) {
if (speed == speed_arr[i]) {
return baudflag_arr[i];
}
}
fprintf(stderr, "Unsupported baudrate, use 9600 instead!\n");
return B9600;
}
static struct termio oterm_attr;
int setup_port(int fd, int baud, int databits, int parity, int stopbits)
{
struct termio term_attr;
if (ioctl(fd, TCGETA, &term_attr) < 0) {
return -1;
}
memcpy(&oterm_attr, &term_attr, sizeof(struct termio));
term_attr.c_iflag &= ~(INLCR | IGNCR | ICRNL | ISTRIP);
term_attr.c_oflag &= ~(OPOST | ONLCR | OCRNL);
term_attr.c_lflag &= ~(ISIG | ECHO | ICANON | NOFLSH);
term_attr.c_cflag &= ~CBAUD;
term_attr.c_cflag |= CREAD | speed_to_flag(baud);
term_attr.c_cflag &= ~(CSIZE);
switch (databits) {
case 5:
term_attr.c_cflag |= CS5;
break;
case 6:
term_attr.c_cflag |= CS6;
break;
case 7:
term_attr.c_cflag |= CS7;
break;
case 8:
default:
term_attr.c_cflag |= CS8;
break;
}
switch (parity) {
case 1:
term_attr.c_cflag |= (PARENB | PARODD);
break;
case 2:
term_attr.c_cflag |= PARENB;
term_attr.c_cflag &= ~(PARODD);
break;
case 0:
default:
term_attr.c_cflag &= ~(PARENB);
break;
}
switch (stopbits) {
case 2:
term_attr.c_cflag |= CSTOPB;
break;
case 1:
default:
term_attr.c_cflag &= ~CSTOPB;
break;
}
term_attr.c_cc[VMIN] = 1;
term_attr.c_cc[VTIME] = 0;
if (ioctl(fd, TCSETAW, &term_attr) < 0) {
return -1;
}
if (ioctl(fd, TCFLSH, 2) < 0) {
return -1;
}
return 0;
}
int read_data(int fd, void *buf, int len)
{
int count;
int ret;
ret = 0;
count = 0;
//while (len > 0) {
ret = read(fd, (char*)buf + count, len);
if (ret < 1) {
fprintf(stderr, "Read error %s\n", strerror(errno));
//break;
}
count += ret;
len = len - ret;
//}
*((char*)buf + count) = 0;
return count;
}
int write_data(int fd, void *buf, int len)
{
int count;
int ret;
ret = 0;
count = 0;
while (len > 0) {
ret = write(fd, (char*)buf + count, len);
if (ret < 1) {
fprintf(stderr, "Write error %s\n", strerror(errno));
break;
}
count += ret;
len = len - ret;
}
return count;
}
void print_usage(char *program_name)
{
fprintf(stderr,
"*************************************\n"
" A Simple Serial Port Test Utility\n"
"*************************************\n\n"
"Usage:\n %s \n"
" databits: 5, 6, 7, 8\n"
" parity: 0(None), 1(Odd), 2(Even)\n"
" stopbits: 1, 2\n"
"Example:\n %s /dev/ttyS4 115200 8 0 1\n\n",
program_name, program_name
);
}
运行效果如下: