rasa run actions
要使用Rasa run actions启动微服务,请运行:
以下参数可用于调整服务器设置:
rasa visualize
要在浏览器中生成故事图,请运行:
如果您的故事位于默认位置 data/以外的位置,则可以使用–stories标志指定它们的位置。
以下参数可用于配置此命令:
运行一个示例 rasa visualize --domain E:\starspace\my_rasa\domain.yml
Rasa官网链接:Installation
Gavin大咖课程信息分享:
NLP 高手之路101课(模型、算法、论文、源码、案例 + 1年答疑)
Rasa 3.x 源码高手之路:系统架构、内核算法、源码实现详解
星空智能对话机器人创始人、AI通用双线思考法作者,现工作于硅谷顶级的AI实验室。专精于Conversational AI. 在美国曾先后工作于硅谷最顶级的机器学习和人工智能实验室
Gavin大咖微信:NLP_Matrix_Space
联系电话:+1 650-603-1290
联系邮箱:[email protected]
Rasa课程链接:荔枝微课
星空智能对话机器人,是全球设计Rasa课程最全面完整、最体系化、涵盖应用行业和课程内容最多的机构,适应人群:
Gavin大咖课程信息分享
课程名称:NLP 高手之路101课(模型、算法、论文、源码、案例 + 1年答疑)
课程关键词:NLP、Transformer、BERT、GPT、Bayesian、Rasa、Transfer learning、Conversational AI、Classifiers、 Policies、Dialogue Management、NER、Pre-training、Fine-tuning、DIET、TED、SimpleTOD、Bert-DST、ConveRT、Poly-Encoder、Chatbot、E2E、NLU、Policies、Microservices、Graph Component、Fallback、LoopAction、Papers、Algorithms、Source Code、Projects
自从Google在2017发布Transformer论文以来,以Transformer为核心的新一代NLP技术在短短的2年左右的时间就彻底革新了整个NLP领域,尤其是2018年的BERT极大的加速了这一革新进程,无论是学术界还是工业界(Google、Amazon、Facebook、Alibaba、Tencent、ByteDance等)的近几年NLP工作均是围绕Transformer这个新一代的NLP架构系统而展开。人工智能领域具有全球广泛影响力的科学家Andrew Ng在2021年回顾AI的最新进展中甚至说 “Originally developed for natural language processing, transformers are becoming the Swiss Army Knife of deep learning.” 其明确表示就最新AI发展进展表明Transformer已经逐步实现了“One Architecture to Do Them All”的人工智能大一统趋势。详情请参考:Top AI Stories of 2021: Transformers Take Over, Models Balloon, Multimodal AI Takes Off, Governments Crack Down - The Batch | DeepLearning.AI
基于此,星空智能对话机器人团队推出了以Transformer为核心的新一代NLP课程“NLP 高手之路101课(模型、算法、论文、源码、案例 + 1年答疑)”,力求通过该课程反映过去几年NLP在硅谷和全球的学术研究和工业落地的最新进展,帮助有志于新一代NLP技术的爱好者、研究者和实践者学习来自硅谷最新的NLP实用技术。具体来说,课程包含以下五大部分:
尤其值得一提的是,Rasa是NLP技术的集大成者,是基于Transformer架构的全球使用最广泛的智能业务对话机器人,而掌握这一核心的技术的人才目前为止是极为稀少的。“NLP高手之路101课” 是全球第一个系统讲解Rasa 3.X架构、算法、源码、调试及项目实战的课程,掌握该课程的内容可以加速学习者成为NLP及Conversational AI技术的引领者。
整个“NLP高手之路101课”涵盖当今NLP应用和科研领域最热门的五大技术方向:预训练、语言理解、对话系统、知识图谱、文本生成等,在深入剖析技术细节及各模块所涵盖最前沿技术的同时,导师会结合自身研究开发星空智能对话机器人12万行核心源码的经验及学术应用前沿,对基于Transformer的新一代NLP的模型、算法、论文、源码、案例等进行全息分享,并提供1年的课程内容技术答疑服务。
购买后联系授课导师Gavin获得代码、资料及完整的课程视频(包含额外的根据学员学习反馈而补充的视频及助教录制的视频)。
课程提供1年的技术答疑服务,Gavin老师负责所有课程技术问题的答疑服务。
Your satisfaction is our number one priority. If something isn't right, please contact us via message before leaving a feedback
第1课 Bayesian Transformer思想及数学原理完整论证
1,线性回归及神经网络AI技术底层通用的贝叶斯数学原理及其有效性证明
2,人工智能算法底层真相之MLE和MAP完整的数学推导过程概率、对数、求导等以及MLE和MAP关系详解
3,语言模型Language Model原理机制、数学推导及神经网络实现
4,图解Transformer精髓之架构设计、数据训练时候全生命周期、数据在推理中的全生命周期、矩阵运算、多头注意力机制可视化等
5,什么叫Bayesian Transformer,Bayesian Transformer和传统的Transformer的核心区别是什么?
6,Bayesian Transformer这种新型思考模型在学术和工业界的意义是什么,为什么说Transformer中到处都是Bayesian的实现?
7,贝叶斯Bayesian Transformer数学推导论证过程全生命周期详解及底层神经网络物理机制剖析
第2课Transformer论文源码完整实现
1,Transformer架构内部的等级化结构及其在NLP中的应用内幕
2,数学内幕、注意力机制代码实现、及Transformer可视化
3,以对话机器人的流式架构为例阐述Transformer学习的第三境界
4,以智能对话机器人为例阐述Transformer的自编码autoencoding和自回归autoregressive语言模型内幕机制
第3课:Transformer语言模型架构、数学原理及内幕机制
1,语言模型的链式法则、运行机制及为何说LM是一个Classifier?
2,基于概率统计Statistical Language Models语言模型内部机制、数学公式、及完整的示例
3,基于神经网络Neural Language Models语言模型内部机制、数学公式、及完整的示例
4,使用困惑度及Cross Entropy来衡量语言模型的质量具体实现及数学公式推导分
5,Language Model底层的数学原理之最大 似然估计MLE及最大后验概率MAP内部机制与关系详解
6,语言模型底层的数学原理之Bayesian模型原理与实现
第4课 GPT自回归语言模型架构、数学原理及内幕机制
1,语言模型的运行机制、架构内部及数学实现回顾