- AI生成PPT:智能技术重塑演示文稿创作的新篇章
mhjidfoi
人工智能
在快节奏的商业与学术环境中,演示文稿(PPT)作为信息传递与观点展示的重要工具,其质量与效率直接关系到演讲者的说服力和观众的接收度。近年来,随着人工智能(AI)技术的飞速发展,AI生成PPT的应用正逐渐从科幻概念转变为现实工具,为演示文稿的创作带来了革命性的变革。本文将深入探讨AI生成PPT的工作原理、优势、挑战以及未来展望,为您揭示这一智能技术的无限潜力。一、AI生成PPT的工作原理AI生成PP
- 零门槛一键生成PPT,利用人工智能快速提高办公效率(无需第三方插件)
beautycountry88
powerpoint人工智能
人工智能技术的发展正以惊人的速度改变着我们的世界,今天给大家介绍下利用ChatGPT快速生成PPT的方法,它能够帮助你一键生成PPT内容和漂亮的PPT文档,无需繁琐的设计和排版,只需要与ChatGPT交流,你就能轻松拥有一份令人赞叹的演示文稿。什么是ChatGPT?它是基于人工智能技术的语言模型,能够理解和生成自然语言。与传统的PPT制作方式不同,ChatGPT通过与你进行对话,理解你的需求和要点
- 探索AloT(人工智能物联网):未来智能设备的核心驱动力
为也科技
人工智能物联网边缘计算目标检测iot
探索AloT(人工智能物联网):未来智能设备的核心驱动力随着物联网(IoT)技术的飞速发展,人工智能(AI)也在各行各业中找到了应用的空间。两者的结合,诞生了一个崭新的技术领域——AloT(ArtificialIntelligenceofThings,人工智能物联网)。AloT不仅仅是AI与物联网技术的简单融合,它更是推动智能设备进化和物联网产业向更高层次发展的关键力量。今天,我们就来深入探讨Al
- 人工智能与量子计算:未来编程的碰撞与共鸣
大梦百万秋
知识学爆量子计算
引言:编程的“摩尔定律”快到尽头了?曾几何时,摩尔定律曾预言着计算能力的飞速发展——每两年,晶体管的数量翻倍,处理器的速度也在跟着疯狂增长。这个定律引领了数十年的技术革命,推动了今天的智能手机、超级计算机和现代互联网的诞生。然而,摩尔定律的黄金时代正逐渐走向尾声。传统的硅基芯片工艺遇到了物理极限,无法再轻易实现持续的性能翻倍。此时,新的计算范式开始崭露头角——量子计算与人工智能(AI)的结合,正在
- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- 南京大学苏州校区学生代表团到访合合信息,开启“沉浸式”人工智能企业行
人工智能图像识别程序员
为进一步深化校企合作,探索产业科技拔尖创新人才培养新模式,近期,南京大学苏州校区师生代表到访上海合合信息科技股份有限公司(以下简称“合合信息”,股票代码:SH688615)。此次活动设置了展厅讲解、技术交流、模拟面试等多个体验环节,旨在增强学生对人工智能及商业大数据技术在实际应用中的理解和认识,引导学生系统性开展职业规划,提升职业胜任力。图说:南京大学苏州校区学生代表团到访合合信息合影留念合合信息
- 反转字符串中的单词 II:Swift 实现与详解
网罗开发
Swiftvue.js
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 【Python】已解决ModuleNotFoundError: No module named ‘tensorflow‘
屿小夏
pythontensorflowneo4j
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 实时离线AI字幕生成与翻译功能在智能眼镜上的应用展望
花生糖@
AIGC学习资料库VLC播放器AIAIGC方案技术AI眼镜
随着人工智能(AI)技术的不断进步,实时字幕生成和翻译功能正逐渐从传统的云服务走向本地设备,为用户提供了更为便捷、私密且广泛适用的服务。特别地,当这些先进的AI能力被集成到诸如智能眼镜这样的穿戴式设备中时,它们可以极大地改善用户体验,并开拓一系列全新的应用场景。技术框架概述VLC播放器近期推出的基于AI的实时字幕生成和翻译功能,标志着一个重要的里程碑。这项创新不仅限于视频播放器内部,而是为整个智能
- 【Python】已解决:ModuleNotFoundError: No module named ‘tensorflow‘
屿小夏
pythontensorflowneo4j
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 一文洞悉AI技术架构:大模型、智能体与应用场景
大模型玩家
人工智能架构数据库深度学习pytorchtransformerai
人工智能(AI)的发展,正以前所未有的速度重塑我们的世界。从能与人对话的大语言模型到自动驾驶、精准医疗,AI的背后究竟隐藏着怎样的技术奥秘?本篇文章将为您深度剖析一套先进的AI技术架构,从基础设施到应用层,每一层都充满了惊喜和启发。读完本文,您不仅能看懂AI的底层逻辑,还能掌握其对各行业变革的潜力与方向。一、基础设施层:AI技术的坚实地基基础设施层是AI技术架构的“地基”,为整个系统提供计算能力和
- Transformer模型全面解析:工作原理、应用与未来展望*
泰山AI
AI大模型应用开发transformer
概述:深入探讨Transformer模型的工作原理,分析其在NLP领域的应用场景,并展望其未来发展趋势。本文为您提供关于Transformer模型的全面指南。正文Transformer模型全面解析:工作原理、应用与未来展望在人工智能的浪潮中,Transformer模型以其强大的性能和广泛的应用场景,成为了自然语言处理(NLP)领域的一颗璀璨明星。本文将对Transformer模型进行深入剖析,从工
- 使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南
m0_57781768
langchain
使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南近年来,随着大语言模型(LLMs)的迅猛发展,基于LLM的复杂问答系统(Q&AChatbot)逐渐成为人工智能领域的热门应用之一。这类应用程序可以基于特定的文本信息源回答用户提出的问题,在实际应用中非常有价值。而实现这些强大功能的核心技术之一,便是检索增强生成(RetrievalAugmentedGeneration,RAG
- 《探秘鸿蒙Next:非结构化数据处理与模型轻量化的完美适配》
人工智能深度学习
在鸿蒙Next的人工智能应用场景中,处理非结构化数据并使其适配模型轻量化需求是一项关键且具有挑战性的任务。以下是一些有效的方法和策略。数据预处理数据清洗:非结构化数据中往往存在噪声、重复和错误数据。对于文本数据,要去除乱码、特殊字符等;对于图像数据,需处理模糊、损坏的图像。比如在处理鸿蒙Next设备采集的监控图像时,通过OpenCV的HarmonyOS适配库进行图像滤波等操作去除噪声。数据归一化与
- 如何利用模板为您的聊天机器人自动生成反馈
FADxafs
机器人windowspython
在人工智能快速发展的今天,聊天机器人是应用大型语言模型(LLM)的最常见接口之一。尽管如此,许多聊天机器人的质量参差不齐,这使得不断完善和发展显得尤为重要。传统的用户反馈机制往往无法有效捕捉用户体验,而这种反馈的稀缺也阻碍了对聊天机器人的进一步优化。本文旨在介绍一种无需明确用户反馈即可评估聊天机器人的方法。技术背景介绍在构建和改进聊天机器人的过程中,用户反馈如“赞”或“踩”往往是稀缺的资源。即使在
- 宇宙规律对可转移量子强化学习架构的启示
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章引言:宇宙规律与量子强化学习架构1.1问题背景宇宙规律是指宇宙中普遍存在的自然规律,如物理学中的万有引力定律、量子力学中的不确定性原理等。这些规律对宇宙的运行和演化起着决定性的作用。随着科技的发展,人们开始意识到这些宇宙规律可能对人工智能领域,尤其是量子强化学习架构的设计和优化有着深远的启示。量子强化学习是一种结合了量子计算和强化学习的新型机器学习方法。它利用量子计算机的优势,在训练和优化模
- 【机器学习】多模态AI——融合多种数据源的智能系统
2的n次方_
人工智能
随着人工智能的快速发展,单一模态(如文本、图像或语音)已经不能满足复杂任务的需求。多模态AI(MultimodalAI)通过结合多种数据源(如文本、图像、音频等)来提升模型的智能和表现,适用于多样化的应用场景,如自动驾驶、医疗诊断、跨语言翻译等。一、多模态AI简介多模态AI是一种将不同形式的数据(如文本、图像、音频等)融合在一起的技术,旨在让模型从多个维度感知和理解信息。这种融合使得AI系统能够从
- Python OpenAI 库开发指南:从入门到实战精通
senger_lcc
python开发语言
在人工智能(AI)领域,OpenAI无疑是全球最受瞩目的机构之一。它推出的GPT系列模型、DALL·E等创新技术,正在深刻改变各行各业。作为Python开发者,我们该如何快速上手并高效利用OpenAI的API,成为了提升个人竞争力的关键。本文将带你从零开始,深入解析Python语言中的openAI库,助你掌握AI开发的核心工具,成为AI领域的专家。一、什么是openAI库?它能为开发者带来什么?1
- Python3.13来了!编程爱好者必看
Python之栈
人工智能python开发语言
Python3.13于近期发布,其中包含大量重要更新。Python作为机器学习、数据科学和人工智能领域使用最广泛的编程语言,一直在不断发展,以满足这些领域日益增长的需求。最新发布的Python3.13提供了多项具有影响力的改进,旨在提高性能和生产力,对于从事ML和AI项目的开发人员来说是一个重要的里程碑。Python在ML和AI领域的主导地位主要归功于它的简单性、广泛的库支持和庞大的社区。然而,随
- 人工智能之数学基础:一个小例子帮你快速搞懂极大线性无关向量组
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能线性代数机器学习极大线性无关向量组深度学习神经网络
本文重点在上一节课程中,我们学习了线性相关和线性无关。当线性相关的时候,那么说明这组向量至少存在一个向量可以被其它向量给表示,可以被表示就说明这个向量就是可有可无的,可以被替代的,这里就涉及到极大线性无关向量组的概念了,本文对此进行学习。极大无关向量组的定义与性质定义在线性空间中,如果存在一个向量组,它满足以下两个条件:一是它本身是线性无关的;二是向量空间中的任何包含它的向量组,如果仍然保持线性无
- 个人职业发展与AI赋能的前端开发
前端
在瞬息万变的科技浪潮中,个人职业发展显得尤为重要。对于前端开发者而言,如何提升自身竞争力,适应日新月异的技术革新,是持续关注的核心问题。而近年来,人工智能(AI)技术的飞速发展,特别是AI代码生成器的兴起,正深刻地改变着前端开发的格局,为开发者们提供了前所未有的机遇。本文将以ScriptEcho为例,探讨AI技术如何赋能前端开发,助力个人职业发展。市场趋势与个人技能提升当前市场对前端开发人才的需求
- 代码重构的革命:AI代码生成器如何改变游戏规则
前端
在软件开发的世界里,代码重构是一项既重要又艰巨的任务。繁琐的重复性工作、低下的效率以及难以避免的错误,常常让开发者们疲惫不堪。然而,随着人工智能技术的飞速发展,智能化代码重构的时代已经到来,而AI代码生成器正成为这场革命的核心驱动力。代码重构的挑战:一个开发者的心声传统的代码重构过程充满了挑战。想象一下,你需要将一个庞大的、混乱的代码库改造成模块化、易于维护的结构。这需要你花费大量的时间去理解现有
- Python 3.13性能大提升:免费多线程时代来临
敖行客 Allthinker
pythonjava开发语言爬虫
在编程的世界里,Python一直以其简洁、易读和强大的功能而备受青睐。随着技术的不断进步,Python的每一个新版本都带来了新的惊喜和改进。而Python3.13无疑是其中的一颗璀璨明星。在一个数据驱动的世界里,Python已经成为了一种无处不在的编程语言,它的性能和功能的提升始终是开发者们关注的热点。随着大数据、人工智能、云计算等技术的飞速发展,对编程语言性能的要求也在不断提高。在这样的背景下,
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 基于MATLAB机器学习、深度学习实践技术应用
梦想的初衷~
机器学习人工智能matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。原文链接https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=224
- ChatGPT搜索漏洞:AI代码生成器安全隐患及应对策略
前端
近年来,随着人工智能技术的飞速发展,各种AI代码生成器层出不穷,为程序员带来了极大的便利。然而,技术进步的同时也伴随着安全风险的提升。最近,OpenAI的ChatGPT搜索工具曝出重大安全漏洞,引发了业界广泛关注。本文将深入探讨该漏洞的细节、影响以及应对措施,并展望未来AI工具安全发展趋势。ChatGPT作为一款强大的AI工具,其搜索功能本意是帮助用户快速获取信息。然而,英国卫报近期报道揭露了Ch
- 深入解析如何进行TensorFlow框架下的算子开发与适配插件开发:基于昇腾AI的完整流程
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能tensorflowpython
深入解析如何进行TensorFlow框架下的算子开发与适配插件开发:基于昇腾AI的完整流程在人工智能领域中,算子(Operator)作为深度学习模型的基础执行单元,决定了整个模型的计算性能和结果准确性。随着硬件平台的多样化,如何将第三方深度学习框架中的算子适配到特定的硬件平台变得至关重要。本文将深入探讨如何在TensorFlow框架下开发适配昇腾AI处理器的算子插件,通过解析算子属性映射、数据排布
- Python从0到100(八十三):神经网络-使用残差网络RESNET识别手写数字
是Dream呀
python神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
倔强的石头_
AIGC人工智能架构
博客主页:倔强的石头的CSDN主页Gitee主页:倔强的石头的gitee主页⏩文章专栏:《AI大模型》期待您的关注目录一、引言二、CANN是什么1.异构计算与人工智能的关系2.CANN的定义和作用3.CANN的技术优势三、基于CANN的辅助驾驶AI应用原理1.目标检测算法2.智能检测流程3.算力平台支持四、基于CANN的辅助驾驶AI优势1.高效训练2.精准检测3.快速编程4.产业应用五、部署实操六
- 探秘IO分布式模块设计:让大数据处理更高效
清水湾落车
分布式
一、引言随着互联网的飞速发展,大数据、云计算、人工智能等技术逐渐成为时代的主流。在这个数据爆炸的时代,如何高效地处理海量数据成为企业面临的重大挑战。IO分布式模块设计作为一种有效的解决方案,越来越受到关注。本文将带您了解IO分布式模块设计的基本概念、原理及其在实际应用中的优势。二、什么是IO分布式模块设计?IO分布式模块设计,是指将数据存储、数据处理、数据传输等IO操作进行分布式处理的一种设计方法
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比