数据加密标准(Data Encryption Standard,缩写DES)是一种对称加密算法,也是一种分组加密算法。
DES算法流程图:
![source: http://homepage.usask.ca/~dtr467/400/](https://img-blog.csdnimg.cn/9f7a46139ff34f6093f0840b71971b05.png
source: https://www.youtube.com/watch?v=qkBisYq8iIs
从上图中可以看出DES算法的整体结构,有16个相同的处理过程,称为’回次’,并在首尾各有一次置换,IP和FP,(实际上FP为IP的反函数,即IP撤销FP的操作)。
从图中也可以发现,DES被分为了俩个部分,左边的是迭代加密,右边是密钥调度;接下来先分析一下迭代加密部分:
置换盒:(部分)
问题:为什么在PC1置换中,要提取特定的56bit?
原64-bit中每8-bit就有1-bit是用于奇偶校验的,为了避免在数据传输过程中出现错误。这也是因为DES的设计考虑了历史上的一种电话系统,它要求每个字节都有奇数个’1’位,以确保数据传输的可靠性。
在费斯妥函数(F函数),S盒,P置换和E扩张各自满足了克劳德·香农在1940年代提出的实用密码所需的必要条件,“混淆与扩散”。
在密码学当中,混淆(confusion)与扩散(diffusion)是设计密码学算法的两种主要方法。这样的定义最早出现在克劳德·香农1945年的论文《密码学的数学理论》当中。
- 在克劳德·香农的定义之中,混淆主要是用来使密文和对称式加密方法中密钥的关系变得尽可能的复杂;而扩散则主要是用来使用明文和密文的关系变得尽可能的复杂,明文中任何一点小更动都会使得密文有很大的差异。
- 混淆用于掩盖明文与密文之间的关系。这可以挫败通过研究密文以获取冗余度和统计模式的企图。做到这一点最容易的方法是“代替”。
- 扩散通过将明文冗余度分散到密文中使之分散开来。即将单个明文或密钥位的影响尽可能扩大到更多的密文中去。产生扩散最简单的方法是换位(置换)。
基于python的DES加解密代码:
from functools import reduce
import numpy as np
# 整数转二进制数组,指定位长 n,大端序
def int2bin(a, n):
assert 0<=n and a < 2**n
res = np.zeros(n, dtype = int)
for x in range(n):
res[n-x-1] = a % 2
a = a // 2
return res.tolist()
assert int2bin(0x1a, 10) == [0, 0, 0, 0, 0, 1, 1, 0, 1, 0]
# 二进制数组转整数,大端序
def bin2int(a):
return reduce(lambda x,y: x*2+y, a)
assert bin2int([0, 0, 0, 0, 0, 1, 1, 0, 1, 0]) == 0x1a
# 循环左移off位
def leftRotate(a, off):
return a[off:] + a[:off]
assert leftRotate([0, 1, 0, 1, 1], 2) == [0, 1, 1, 0, 1]
# 异或
def binXor(a, b):
assert len(a) == len(b)
return [x^y for x, y in zip(a, b)]
assert binXor([1, 1, 0, 1], [0, 1, 1, 0]) == [1, 0, 1, 1]
# 初始置换
def IP(a):
ip = [58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7]
return [a[x-1] for x in ip]
testM = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1]
assert IP(testM) == [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0]
# 最终置换
def FP(a):
fp = [40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25]
return [a[x-1] for x in fp]
# 选择置换1
# 从64位输入密钥中选择56位,分为左右两个28位半密钥
def PC1(key):
pc1_l = [57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36]
pc1_r = [63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4]
return [key[x-1] for x in pc1_l], [key[x-1] for x in pc1_r]
testKey = [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1]
testL, testR = PC1(testKey)
assert testL + testR == [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1]
# 选择置换2
# 从56位的密钥中选取48位子密钥
def PC2(key):
assert len(key) == 56
pc2 = [14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32]
return [key[x-1] for x in pc2]
# 子密钥生成算法,由一个64位主密钥导出16个48位子密钥
def keyGen(key):
assert len(key) == 64
l, r = PC1(key)
off = [1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1]
res = []
for x in range(16):
l = leftRotate(l, off[x])
r = leftRotate(r, off[x])
res.append(PC2(l + r))
return res
assert keyGen(testKey)[-1] == [1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1]
# S盒变换,输入48位,输出32位
def S(a):
assert len(a) == 48
S_box = [[14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13],
[15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9],
[10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12],
[7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14],
[2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3],
[12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13],
[4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12],
[13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11]]
a = np.array(a, dtype=int).reshape(8, 6)
res = []
for i in range(8):
# 用 S_box[i] 处理6位a[i],得到4位输出
p = a[i]
r = S_box[i][bin2int([p[0], p[5], p[1], p[2], p[3], p[4]])]
res.append(int2bin(r, 4))
res = np.array(res).flatten().tolist()
assert len(res) == 32
return res
# 扩张置换,将32位的半块扩展到48位
def Expand(a):
assert len(a) == 32
e = [32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1]
return [a[x-1] for x in e]
# P置换
def P(a):
assert len(a) == 32
p = [16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25]
return [a[x-1] for x in p]
# F函数,用于处理一个半块
def Feistel(a, subKey):
assert len(a) == 32
assert len(subKey) == 48
t = binXor(Expand(a), subKey)
t = S(t)
t = P(t)
return t
def goRound(l, r, subKey):
return r, binXor(l, Feistel(r, subKey))
def DES(plain, key, method):
subkeys = keyGen(int2bin(key, 64))
if method == 'decrypt':
subkeys = subkeys[::-1]
m = IP(int2bin(plain, 64))
l, r = np.array(m, dtype=int).reshape(2, -1).tolist()
for i in range(16):
l, r = goRound(l, r, subkeys[i])
return bin2int(FP(r + l))
print(hex(DES(0x11aabbccddeeff01, 0xcafababedeadbeaf, 'encrypt')))
# 0x2973a7e54ec730a3
print(hex(DES(0x2973a7e54ec730a3, 0xcafababedeadbeaf, 'decrypt')))
# 0x11aabbccddeeff01
代码来源至https://www.ruanx.net/des/,作者:RUAN XINGZHI
文献参考:
https://www.youtube.com/watch?v=qkBisYq8iIs&t=1155s
https://www.ruanx.net/des/
https://zh.wikipedia.org/wiki/%E8%B3%87%E6%96%99%E5%8A%A0%E5%AF%86%E6%A8%99%E6%BA%96