是一个单目运算符,接受一个对象类型作为参数,返回该对象的所有键名组成的联合类型。
type MyObj = {
foo: number,
bar: string,
};
type Keys = keyof MyObj; // 'foo'|'bar'
这个例子keyof MyObj
返回MyObj
的所有键名组成的联合类型,即'foo'|'bar'
由于 JavaScript 对象的键名只有三种类型,所以对于任意对象的键名的联合类型就是string|number|symbol
。
对于没有自定义键名的类型使用 keyof 运算符,返回never
类型,表示不可能有这样类型的键名
type KeyT = keyof object; // never
上面示例中,由于object
类型没有自身的属性,也就没有键名,所以keyof object
返回never
类型。
由于 keyof 返回的类型是string|number|symbol
,如果有些场合只需要其中的一种类型,那么可以采用交叉类型的写法。
type Capital<T extends string> = Capitalize<T>;
type MyKeys<Obj extends object> = Capital<keyof Obj>; // 报错
type MyKeys<Obj extends object> = Capital<string & keyof Obj>;
这个列子中,string & keyof Obj
等同于string & string|number|symbol
进行交集运算,最后返回string
,因此Capital
就不会报错了。
如果对象属性名采用索引形式,keyof 会返回属性名的索引类型。
// 示例一
interface T {
[prop: number]: number;
}
// number
type KeyT = keyof T;
// 示例二
interface T {
[prop: string]: number;
}
// string|number
type KeyT = keyof T;
上面的示例二,keyof T
返回的类型是string|number
,原因是 JavaScript 属性名为字符串时,包含了属性名为数值的情况,因为数值属性名会自动转为字符串
如果 keyof 运算符用于数组或元组类型,得到的结果可能出人意料。
type Result = keyof ['a', 'b', 'c'];
// 返回 number | "0" | "1" | "2"
// | "length" | "pop" | "push" | ···
上面示例中,keyof 会返回数组的所有键名,包括数字键名和继承的键名。
对于联合类型,keyof 返回成员共有的键名。
type A = { a: string; z: boolean };
type B = { b: string; z: boolean };
// 返回 'z'
type KeyT = keyof (A | B);
对于交叉类型,keyof 返回所有键名。
type A = { a: string; x: boolean };
type B = { b: string; y: number };
// 返回 'a' | 'x' | 'b' | 'y'
type KeyT = keyof (A & B);
// 相当于
keyof (A & B) ≡ keyof A | keyof B
keyof 取出的是键名组成的联合类型,如果想取出键值组成的联合类型,可以像下面这样写。
type MyObj = {
foo: number,
bar: string,
};
type Keys = keyof MyObj;
type Values = MyObj[Keys]; // number|string
上面示例中,Keys
是键名组成的联合类型,而MyObj[Keys]
会取出每个键名对应的键值类型,组成一个新的联合类型,即number|string
。
在js中in用来确定对象是否包含某个属性名,在ts 类型运算中,in
运算符用来取出(遍历)联合类型的每一个成员类型。
type U = 'a'|'b'|'c';
type Foo = {
[Prop in U]: number;
};
// 等同于
type Foo = {
a: number,
b: number,
c: number
};
[Prop in U]
表示依次取出联合类型U
的每一个成员。
用来取出对象的键值类型,比如T[K]会返回对象T的属性K的类型。
type Person = {
age: number;
name: string;
alive: boolean;
};
// Age 的类型是 number
type Age = Person['age'];
方括号的参数如果是联合类型,那么返回的也是联合类型。
type Person = {
age: number;
name: string;
alive: boolean;
};
// number|string
type T = Person['age'|'name'];
// number|string|boolean
type A = Person[keyof Person];
如果访问不存在的属性,会报错。
type T = Person['notExisted']; // 报错
方括号运算符的参数也可以是属性名的索引类型。
type Obj = {
[key:string]: number,
};
// number
type T = Obj[string];
这个语法对于数组也适用,可以使用number
作为方括号的参数。
// MyArray 的类型是 { [key:number]: string }
const MyArray = ['a','b','c'];
// 等同于 (typeof MyArray)[number]
// 返回 string
type Person = typeof MyArray[number];
上面示例中,MyArray
是一个数组,它的类型实际上是属性名的数值索引,而typeof MyArray[number]
的typeof
运算优先级高于方括号,所以返回的是所有数值键名的键值类型string
。
方括号里面不能有值的运算。
// 示例一
const key = 'age';
type Age = Person[key]; // 报错
// 示例二
type Age = Person['a' + 'g' + 'e']; // 报错
上面两个示例,方括号里面都涉及值的运算,编译时不会进行这种运算,所以会报错。
可以根据当前类型是否符合某种条件,返回不同的类型。
T extends U ? X : Y
上面式子中的extends
用来判断,类型T
是否可以赋值给类型U
,即T
是否为U
的子类型,这里的T
和U
可以是任意类型。如果T
能够赋值给类型U
,表达式的结果为类型X
,否则结果为类型Y
。
// true
type T = 1 extends number ? true : false;
上面示例中,1
是number
的子类型,所以返回true
。
如果需要判断的类型是一个联合类型,那么条件运算符会展开这个联合类型。
(A|B) extends U ? X : Y
// 等同于
(A extends U ? X : Y) |
(B extends U ? X : Y)
上面示例中,A|B
是一个联合类型,进行条件运算时,相当于A
和B
分别进行运算符,返回结果组成一个联合类型。
如果不希望联合类型被条件运算符展开,可以把extends
两侧的操作数都放在方括号里面。
// 示例一
type ToArray<Type> =
Type extends any ? Type[] : never;
// string[]|number[]
type T = ToArray<string|number>;
// 示例二
type ToArray<Type> =
[Type] extends [any] ? Type[] : never;
// (string | number)[]
type T = ToArray<string|number>;
上面的示例一,传入ToArray
的类型参数是一个联合类型,所以会被展开,返回的也是联合类型。示例二是extends
两侧的运算数都放在方括号里面,所以传入的联合类型不会展开,返回的是一个数组。
条件运算符还可以嵌套使用。
type LiteralTypeName<T> =
T extends undefined ? "undefined" :
T extends null ? "null" :
T extends boolean ? "boolean" :
T extends number ? "number" :
T extends bigint ? "bigint" :
T extends string ? "string" :
never;
// "bigint"
type Result1 = LiteralTypeName<123n>;
// "string" | "number" | "boolean"
type Result2 = LiteralTypeName<true | 1 | 'a'>;
上面示例是一个多重判断,返回一个字符串的值类型,对应当前类型。
用来定义泛型里面推断出来的类型参数,而不是外部传入的类型参数。它通常跟条件运算符一起使用,用在extends关键字后面的父类型中。
type Flatten<Type> = Type extends Array<infer Item> ? Item : Type;
上面示例中,infer Item
表示Item
这个参数是 TypeScript 自己推断出来的,不用显式传入,而Flatten
则表示Type
这个类型参数是外部传入的。Type extends Array
则表示,如果参数Type
是一个数组,那么就将该数组的成员类型推断为Item
,即Item
是从Type
推断出来的。
一旦使用Infer Item
定义了Item
,后面的代码就可以直接调用Item
了。下面是上例的泛型Flatten
的用法。
// string
type Str = Flatten<string[]>;
// number
type Num = Flatten<number>;
上面示例中,第一个例子Flatten
传入的类型参数是string[]
,可以推断出Item
的类型是string
,所以返回的是string
。第二个例子Flatten
传入的类型参数是number
,它不是数组,所以直接返回自身。
如果不用infer
定义类型参数,那么就要传入两个类型参数。
type Flatten<Type, Item> =
Type extends Array<Item> ? Item : Type;
上面是不使用infer
的写法,每次调用Flatten
的时候,都要传入两个参数,就比较麻烦。
下面的例子使用infer
,推断函数的参数类型和返回值类型。
type ReturnPromise<T> =
T extends (...args: infer A) => infer R
? (...args: A) => Promise<R>
: T;
上面示例中,如果T
是函数,就返回这个函数的 Promise 版本,否则原样返回。infer A
表示该函数的参数类型为A
,infer R
表示该函数的返回值类型为R
。
如果不使用infer
,就不得不把ReturnPromise
写成ReturnPromise
,这样就很麻烦,相当于开发者必须人肉推断编译器可以完成的工作。
下面是infer
提取对象指定属性的例子。
type MyType<T> =
T extends {
a: infer M,
b: infer N
} ? [M, N] : never;
// 用法示例
type T = MyType<{ a: string; b: number }>;
// [string, number]
上面示例中,infer
提取了参数对象的属性a
和属性b
的类型。
下面是infer
通过正则匹配提取类型参数的例子。
type Str = 'foo-bar';
type Bar = Str extends `foo-${infer rest}` ? rest : never // 'bar'
上面示例中,rest
是从模板字符串提取的类型参数。
函数返回布尔值时,可以使用is运算符,来限定返回值与参数之间的关系。
is运算符用来描述返回值是true还是false。
function isFish(
pet: Fish|Bird
):pet is Fish {
return (pet as Fish).swim !== undefined;
}
上面示例中,函数isFish()
的返回值类型为pet is Fish
,表示如果参数pet
类型为Fish
,则返回true
,否则返回false
。
is
运算符总是用于描述函数的返回值类型,写法采用parameterName is Type
的形式,即左侧为当前函数的参数名,右侧为某一种类型。它返回一个布尔值,表示左侧参数是否属于右侧的类型。
is
运算符可以用于类型保护。
function isCat(a:any): a is Cat {
return a.name === 'kitty';
}
let x:Cat|Dog;
if (isCat(x)) {
x.meow(); // 正确,因为 x 肯定是 Cat 类型
}
上面示例中,函数isCat()
的返回类型是a is Cat
,它是一个布尔值。后面的if
语句就用这个返回值进行判断,从而起到类型保护的作用,确保x
是 Cat 类型,从而x.meow()
不会报错(假定Cat
类型拥有meow()
方法)
is
运算符还有一种特殊用法,就是用在类(class)的内部,描述类的方法的返回值。
class Teacher {
isStudent():this is Student {
return false;
}
}
class Student {
isStudent():this is Student {
return true;
}
}
上面示例中,isStudent()
方法的返回值类型,取决于该方法内部的this
是否为Student
对象。如果是的,就返回布尔值true
,否则返回false
。
注意,this is T
这种写法,只能用来描述方法的返回值类型,而不能用来描述属性的类型。
ts可以使用模板字符串构建类型,模板字符串最大的特点就是内部可以引用其他类型。
type World = "world";
// "hello world"
type Greeting = `hello ${World}`;
上面示例中,类型Greeting
是一个模板字符串,里面引用了另一个字符串类型world
,因此Greeting
实际上是字符串hello world
模板字符串可以引用的类型一共6种,分别是 string、number、bigint、boolean、null、undefined。引用这6种以外的类型会报错。
模板字符串里面引用的类型,如果是一个联合类型,那么它返回的也是一个联合类型,即模板字符串可以展开联合类型。
type T = 'A'|'B';
// "A_id"|"B_id"
type U = `${T}_id`;
上面示例中,类型U
是一个模板字符串,里面引用了一个联合类型T
,导致最后得到的也是一个联合类型。
如果模板字符串引用两个联合类型,它会交叉展开这两个类型。
type T = 'A'|'B';
type U = '1'|'2';
// 'A1'|'A2'|'B1'|'B2'
type V = `${T}${U}`;
上面示例中,T
和U
都是联合类型,各自有两个成员,模板字符串里面引用了这两个类型,最后得到的就是一个4个成员的联合类型。