10 个 Python 自动探索性数据分析神库!

探索性数据分析是数据科学模型开发和数据集研究的重要组成部分之一。在拿到一个新数据集时首先就需要花费大量时间进行EDA来研究数据集中内在的信息。自动化的EDA Python包可以用几行Python代码执行EDA。

在本文中整理了10个可以自动执行EDA并生成有关数据的见解的Python包,看看他们都有什么功能,能在多大程度上帮我们自动化解决EDA的需求。

  1. DTale
  2. Pandas-profiling
  3. sweetviz
  4. autoviz
  5. dataprep
  6. KLib
  7. dabl
  8. speedML
  9. datatile
  10. edaviz

1、D-Tale

10 个 Python 自动探索性数据分析神库!_第1张图片

D-Tale使用Flask作为后端、React前端并且可以与ipython notebook和终端无缝集成。D-Tale可以支持Pandas的DataFrame, Series, MultiIndex, DatetimeIndex和RangeIndex。

import dtaleimport pandas as pddtale.show(pd.read_csv("titanic.csv"))

10 个 Python 自动探索性数据分析神库!_第2张图片

D-Tale库用一行代码就可以生成一个报告,其中包含数据集、相关性、图表和热图的总体总结,并突出显示缺失的值等。D-Tale还可以为报告中的每个图表进行分析,上面截图中我们可以看到图表是可以进行交互操作的。

2、Pandas-Profiling

10 个 Python 自动探索性数据分析神库!_第3张图片

Pandas-Profiling可以生成Pandas DataFrame的概要报告。panda-profiling扩展了pandas DataFrame df.profile_report(),并且在大型数据集上工作得非常好,它可以在几秒钟内创建报告。

#Install the below libaries before importingimport pandas as pdfrom pandas_profiling import ProfileReport#EDA using pandas-profilingprofile = ProfileReport(pd.read_csv('titanic.csv'), explorative=True)#Saving results to a HTML fileprofile.to_file("output.html")

10 个 Python 自动探索性数据分析神库!_第4张图片

3、Sweetviz

10 个 Python 自动探索性数据分析神库!_第5张图片

Sweetviz是一个开源的Python库,只需要两行Python代码就可以生成漂亮的可视化图,将EDA(探索性数据分析)作为一个HTML应用程序启动。Sweetviz包是围绕快速可视化目标值和比较数据集构建的。

import pandas as pdimport sweetviz as sv#EDA using Autovizsweet_report = sv.analyze(pd.read_csv("titanic.csv"))#Saving results to HTML filesweet_report.show_html('sweet_report.html')

Sweetviz库生成的报告包含数据集、相关性、分类和数字特征关联等的总体总结。

10 个 Python 自动探索性数据分析神库!_第6张图片

4、AutoViz

10 个 Python 自动探索性数据分析神库!_第7张图片

Autoviz包可以用一行代码自动可视化任何大小的数据集,并自动生成HTML、bokeh等报告。用户可以与AutoViz包生成的HTML报告进行交互。

import pandas as pdfrom autoviz.AutoViz_Class import AutoViz_Class#EDA using Autovizautoviz = AutoViz_Class().AutoViz('train.csv')

10 个 Python 自动探索性数据分析神库!_第8张图片

5、Dataprep

10 个 Python 自动探索性数据分析神库!_第9张图片

Dataprep是一个用于分析、准备和处理数据的开源Python包。DataPrep构建在Pandas和Dask DataFrame之上,可以很容易地与其他Python库集成。

DataPrep的运行速度这10个包中最快的,他在几秒钟内就可以为Pandas/Dask DataFrame生成报告。

from dataprep.datasets import load_datasetfrom dataprep.eda import create_reportdf = load_dataset("titanic.csv")create_report(df).show_browser()

10 个 Python 自动探索性数据分析神库!_第10张图片

6、Klib

10 个 Python 自动探索性数据分析神库!_第11张图片

klib是一个用于导入、清理、分析和预处理数据的Python库。

import klibimport pandas as pddf = pd.read_csv('DATASET.csv')klib.missingval_plot(df)

10 个 Python 自动探索性数据分析神库!_第12张图片

klib.corr_plot(df_cleaned, annot=False)

10 个 Python 自动探索性数据分析神库!_第13张图片

klib.dist_plot(df_cleaned['Win_Prob'])

10 个 Python 自动探索性数据分析神库!_第14张图片

klib.cat_plot(df, figsize=(50,15))

10 个 Python 自动探索性数据分析神库!_第15张图片

klibe虽然提供了很多的分析函数,但是对于每一个分析需要我们手动的编写代码,所以只能说是半自动化的操作,但是如果我们需要更定制化的分析,他是非常方便的。

10 个 Python 自动探索性数据分析神库!_第16张图片

7、Dabl

Dabl不太关注单个列的统计度量,而是更多地关注通过可视化提供快速概述,以及方便的机器学习预处理和模型搜索。

10 个 Python 自动探索性数据分析神库!_第17张图片

dabl中的Plot()函数可以通过绘制各种图来实现可视化,包括:

  • 目标分布图
  • 散点图
  • 线性判别分析
import pandas as pdimport dabldf = pd.read_csv("titanic.csv")dabl.plot(df, target_col="Survived")

10 个 Python 自动探索性数据分析神库!_第18张图片

8、Speedml

SpeedML是用于快速启动机器学习管道的Python包。SpeedML整合了一些常用的ML包,包括 Pandas,Numpy,Sklearn,Xgboost 和 Matplotlib,所以说其实SpeedML不仅仅包含自动化EDA的功能。

SpeedML官方说,使用它可以基于迭代进行开发,将编码时间缩短了70%。

from speedml import Speedmlsml = Speedml('../input/train.csv', '../input/test.csv',            target = 'Survived', uid = 'PassengerId')sml.train.head()

10 个 Python 自动探索性数据分析神库!_第19张图片

sml.plot.correlate()

10 个 Python 自动探索性数据分析神库!_第20张图片

sml.plot.distribute()

10 个 Python 自动探索性数据分析神库!_第21张图片

sml.plot.ordinal('Parch')

10 个 Python 自动探索性数据分析神库!_第22张图片

sml.plot.ordinal('SibSp')

10 个 Python 自动探索性数据分析神库!_第23张图片

sml.plot.continuous('Age')

10 个 Python 自动探索性数据分析神库!_第24张图片

9、DataTile

DataTile(以前称为Pandas-Summary)是一个开源的Python软件包,负责管理,汇总和可视化数据。DataTile基本上是PANDAS DataFrame describe()函数的扩展。

import pandas as pdfrom datatile.summary.df import DataFrameSummarydf = pd.read_csv('titanic.csv')dfs = DataFrameSummary(df)dfs.summary()

10 个 Python 自动探索性数据分析神库!_第25张图片

10、edaviz

edaviz是一个可以在Jupyter Notebook和Jupyter Lab中进行数据探索和可视化的python库,他本来是非常好用的,但是后来被砖厂(Databricks)收购并且整合到bamboolib 中,所以这里就简单的给个演示。

总结

在本文中,我们介绍了10个自动探索性数据分析Python软件包,这些软件包可以在几行Python代码中生成数据摘要并进行可视化。通过自动化的工作可以节省我们的很多时间。

Dataprep是我最常用的EDA包,AutoViz和D-table也是不错的选择,如果你需要定制化分析可以使用Klib,SpeedML整合的东西比较多,单独使用它啊进行EDA分析不是特别的适用,其他的包可以根据个人喜好选择,其实都还是很好用的,最后edaviz就不要考虑了,因为已经不开源了。

学好 Python 不论是就业还是做副业赚钱都不错,这里给大家分享一份Python全套学习资料,包括学习路线、软件、源码、视频、面试题等等,都是我自己学习时整理的,希望可以对正在学习或者想要学习Python的朋友有帮助!

CSDN大礼包:《python入门&进阶学习资源包》免费分享

Python全套学习资料

在这里插入图片描述
(部分资料截取图)
在这里插入图片描述

① Python全套书籍和视频秘籍

其中包含了Python基础入门、爬虫、数据分析、web开发,这里一共有几十个吧,可能不是很多,但对于初学者来说应该足够。
里面的知识点都是比较干练的,时长也是正常的40分钟一节课。

②Python数据分析入门到精通

(视频课程+课件+源码)
在这里插入图片描述

③零基础也能懂的python办公自动化教程

在这里插入图片描述

④Python面试集锦和简历模板

学会了Python之后,有了技能就可以出去找工作了!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

⑤Python副业兼职路线

学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
上述所有资料 ⚡️ ,朋友们如果有需要《全套0基础入门到进阶的Python学习资料》的,可以扫描下方二维码免费领取

你可能感兴趣的:(python,数据分析,开发语言,人工智能,软件测试,数据挖掘,大数据)