雀魂启动

雀魂启动

  • 一、题目
  • 二、代码
  • 总结

一、题目

小包最近迷上了一款叫做雀魂的麻将游戏,但是这个游戏规则太复杂,小包玩了几个月了还是输多赢少。于是生气的小包根据游戏简化了一下规则发明了一种新的麻将,只留下一种花色,并且去除了一些特殊和牌方式(例如七对子等),具体的规则如下:

总共有36张牌,每张牌是1~9。每个数字4张牌。你手里有其中的14张牌,如果这14张牌满足如下条件,即算作和牌;14张牌中有2张相同数字的牌,称为雀头。除去上述2张牌,剩下12张牌可以组成4个顺子或刻子。顺子的意思是递增的连续3个数字牌(例如234,567等),刻子的意思是相同数字的3个数字牌(例如111,777)

例如:
1 1 1 2 2 2 6 6 6 7 7 7 9 9 可以组成1,2,6,7的4个刻子和9的雀头,可以和牌
1 1 1 1 2 2 3 3 5 6 7 7 8 9 用1做雀头,组123,123,567,789的四个顺子,可以和牌
1 1 1 2 2 2 3 3 3 5 6 7 7 9 无论用1 2 3 7哪个做雀头,都无法组成和牌的条件。

现在,小包从36张牌中抽取了13张牌,他想知道在剩下的23张牌中,再取一张牌,取到哪几种数字牌可以和牌。

二、代码

import java.util.Scanner;
 
/**
 * 回溯法
 */
public class Main {
 
 
    private static int[] arr = new int[13];
    private static int[] count;
 
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
 
 
        count = new int[9];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = scanner.nextInt();
            ++count[arr[i]-1];
        }
 
 
        int winCount = 0;
        // 选择1到9中的一个作为第14张牌,然后判断是否胡牌
        for (int i = 1 ; i <= 9; i++) {
            if(count[i-1]<4){
                ++count[i-1];
                if(win()){
                    ++winCount;
                    System.out.print(i);
                    System.out.print(" ");
                }
                --count[i-1];
            }
        }
        if(winCount==0){
            System.out.println(0);
        }
    }
    public static boolean win(){
        // 从1到9 中选择一个作为雀头, 然后判断剩余的牌是否构成4对
        for (int i = 1; i <= 9; i++) {
            if(count[i-1]<2){
                continue;
            }
            count[i-1]-=2;
            if(hasTriples(4)){
                count[i-1]+=2;
                return true;
            }
            count[i-1]+=2;
        }
        return false;
    }
 
    public static boolean hasTriples(int n){
        if(n==0){
            return true;
        }
        // 1到9,每一张牌尝试三张或顺子
        for (int i = 1; i <= 9; i++) {
            if(count[i-1]>=3){
                count[i-1]-=3;
                boolean subHashTriples = hasTriples(n-1);
                count[i-1]+=3;
                if(subHashTriples){
                    return true;
                }
            }
            if(i<=7  && count[i-1]>0 && count[i] > 0 && count[i+1]>0){
                --count[i-1];
                --count[i];
                --count[i+1];
                boolean subHasTriples = hasTriples(n-1);
 
                ++count[i-1];
                ++count[i];
                ++count[i+1];
                if(subHasTriples){
                    return true;
                }
            }
        }
        return false;
    }
}

总结

这题用的是回溯法,看了答案之后也不算太难,刚做时主要不知道如何判断是否有4个顺子或刻子。

你可能感兴趣的:(算法)