- 绘|画画让人穿越
蜡笔小猫儿
昨天的小课结束之后(点击“小课”两个字,复习一下)留了一组作业:用新方法临摹一下这四个小玩意你觉得上面两个和下面两个有什么区别吗?第一组第二组区别在于?在于??于???对,第一组的相机和书包是平面视角而第二组的旅行箱和铅笔盒则是立体的我们来具体讲讲这个笔盒根据昨天的方法你临摹的第一步可能河阳的这代表你的思考过程是这是一个六角形里面有三根线把它分成了三个平行四边形……你根本没在画一个笔盒啊!既然你不
- 旋转目标检测:Deep Spatial Feature Transformation for Oriented Aerial Object Detection【方法解析】
沉浸式AI
《AI与SLAM论文解析》人工智能计算机视觉旋转目标检测
DeepSpatialFeatureTransformationforOrientedAerialObjectDetection目录DeepSpatialFeatureTransformationforOrientedAerialObjectDetection摘要关键词引言相关工作旋转对齐模块特征对齐方法旋转对齐模块特征选择模块摘要航空图像中的目标检测在计算机视觉领域引起了广泛关注。不同于自然图像
- After Effects 教程,如何在 After Effects 中使用3D 摄像机跟踪器效果?
Mac123123
欢迎观看AfterEffects中文版教程,小编带大家学习AfterEffects的基本工具和使用技巧,了解如何在AE中使用3D摄像机跟踪器效果。3D摄像机跟踪器效果可以分析一段视频,并确定用于拍摄镜头的原始相机的精确位置和移动。将使用这种效果将一些文本放置到场景中,使其看起来好像一直处于场景本身的环境中。选择「时间轴」中的「Runway.mov」图层,在「动画」菜单中选择「跟踪相机」。选择特效后
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- 【华为OD机试真题 Python语言】135、采样过滤 | 机试真题+思路参考+代码解析
KFickle
华为odpython华为华为OD机试真题采样过滤
文章目录一、题目题目描述输入输出样例1二、思路参考三、代码参考作者:鲨鱼狼臧个人博客首页:鲨鱼狼臧专栏介绍:2024华为OD机试真题,使用Python进行解答,专栏每篇文章都包括真题,思路参考,代码分析,思路参考超过百字,欢迎大家订阅学习一、题目题目描述在做物理实验时,为了计算物体移动的速率,通过相机等工具周期性的采样物体移动距离。由于工具故障,采样数据存在误差甚至相误的情况。需要通过一个算法过滤
- MATLAB在工业缺陷检测中的应用
本文还有配套的精品资源,点击获取简介:缺陷检测、伤痕检测、瑕疵检测和划痕检测是工业自动化和质量控制中至关重要的环节,MATLAB作为一种高级编程环境,在图像处理和计算机视觉任务中扮演了重要角色。本文详细介绍了如何使用MATLAB实现这些检测过程,包括图像采集、预处理、特征提取和决策制定等步骤。通过介绍内置图像处理工具箱中的应用,色彩转换技术、边缘检测算法以及形态学操作等方法,我们阐述了如何识别和处
- 【缺陷检测】基于计算机视觉实现电路板智能检测系统附Matlab代码
matlab科研助手
计算机视觉matlab人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍随着信息技术的飞速发展和电子产品的日益普及,印刷电路板(PCB)作为电子产品的核心组件,其质量直接关系到整个系统的性能和可靠性。传统的电路板检测主要依赖人工目检,存在效率低下
- Real-World Blur Dataset for Learning and Benchmarking Deblurring Algorithms
钟屿
深度学习
用于学习和评估去模糊算法的真实世界模糊数据集摘要近年来,针对相机抖动和物体运动模糊的单幅图像去模糊提出了许多基于学习的方法。为了将这些方法推广到真实世界的模糊场景,包含大量真实模糊图像及其对应的清晰真实图像(groundtruth)的数据集至关重要。然而,目前尚不存在这样的数据集,因此所有现有方法都依赖于合成数据集,这导致它们无法有效去除真实世界图像的模糊。在本工作中,我们提出了一个用于学习和评估
- 【人工智能99问】卷积神经网络(CNN)的结构和原理是什么?(10/99)
文章目录卷积神经网络(CNN)的结构及原理一、CNN的核心结构1.输入层(InputLayer)2.卷积层(ConvolutionalLayer)2.卷积层的核心机制:局部感受野与权值共享3.池化层(PoolingLayer)4.全连接层(FullyConnectedLayer)5.输出层(OutputLayer)6.辅助层二、CNN的工作原理三、CNN的使用场景1.计算机视觉(最核心场景)2.其
- Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring 论文阅读
钟屿
论文阅读计算机视觉人工智能
用于动态场景去模糊的深度多尺度卷积神经网络摘要针对一般动态场景的非均匀盲去模糊是一个具有挑战性的计算机视觉问题,因为模糊不仅来源于多个物体运动,还来源于相机抖动和场景深度变化。为了去除这些复杂的运动模糊,传统的基于能量优化的方法依赖于简单的假设,例如模糊核是部分均匀或局部线性的。此外,最近的基于机器学习的方法也依赖于在这些假设下生成的合成模糊数据集。这使得传统的去模糊方法在模糊核难以近似或参数化的
- YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测
在深度学习领域,手写数字识别是一个经典问题,也是入门计算机视觉的重要案例。本文将介绍一个基于YOLOv8和MNIST数据集的手写数字识别系统,该系统不仅能识别静态图像中的数字,还能通过摄像头实时检测手写数字。个人博客:YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测-iDing's博客项目概述这个项目结合了传统的MNIST数据集和现代的目标检测算法YOLOv8,实现了以下功能:将MN
- 基于深度学习的手写数字和符号识别系统:YOLOv5/v6/v7/v8/v10模型实现与UI界面集成
YOLO实战营
深度学习YOLOui人工智能目标检测计算机视觉
1.引言随着人工智能和深度学习技术的发展,手写数字和符号识别已经成为计算机视觉领域的重要研究方向。手写识别在很多实际应用中扮演着关键角色,例如邮政编码识别、表单自动处理和智能教育系统等。传统的手写识别方法通常依赖于复杂的特征工程,而深度学习则能够自动从数据中学习到特征,极大地提高了识别精度和速度。本文将介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、Y
- Qt 3D模块加载复杂模型
使用Qt渲染复杂的3D模型该怎么做呢?1.使用Qt3D模块示例如下:#include#include#include#include#include#include//创建基础3D场景Qt3DExtras::Qt3DWindowview;//创建根实体Qt3DCore::QEntity*rootEntity=newQt3DCore::QEntity;//添加相机Qt3DRender::QCamer
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现打架检测(C#代码,UI界面版)
格林威
工业相机机器视觉数码相机YOLO深度学习计算机视觉人工智能
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现打架检测(C#代码,UI界面版)工业相机使用YoloV8模型实现打架检测工业相机通过YoloV8模型实现打架检测的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实现
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人脸识别检测(C#代码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习人工智能视觉检测c#
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人脸识别检测(C#代码,UI界面版)工业相机使用YoloV8模型实现人脸的检测工业相机通过YoloV8模型实现人脸识别检测的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人物识别(C#代码,UI界面版)
格林威
工业相机机器视觉数码相机YOLOc#人工智能计算机视觉开发语言
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现人物识别(C#代码,UI界面版)工业相机使用YoloV8模型实现人物识别工业相机实现YoloV8模型实现人物识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实现
- UFS4.0 协议之简介
思无邪呢
UFSUFS存储技术JESD220F
通用闪存存储(UFS)是一种基于串行接口的简单、高性能大容量存储设备,主要用于移动系统的主机处理器与大容量存储设备之间的交互。以下是UFS设备的核心特性概述:4.1通用特性目标性能高速档位(GEARs)必须支持GEAR1至GEAR5的所有档位。目标主机应用手机、超便携个人电脑(UMPC)、数码静态相机(DSC)、便携式媒体播放器(PMP)、MP3播放器等需要大容量存储、可启动存储或外部卡的设备。目
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版)
格林威
机器视觉工业相机数码相机YOLO深度学习计算机视觉人工智能视觉检测c#
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现动物分类(C#源码,UI界面版))工业相机使用YoloV8模型实现动物分类工业相机实现YoloV8模型实现动物分类的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入YoloV8模型重要核心代码代码实
- 风光摄影——余云华
黄颖
今天下午一位把摄影当做爱好的非常厉害的风光摄影师——余云华,给我们分享了他这几年的拍摄经历与心得,听完之后,着实佩服。余老师先给我们讲了有关拍摄风光对相机,镜头的基本要求,接着讲到了如何选景取景,用光等基本操作,干货满满,收获颇多。我一直对自然风光摄影很感兴趣,也很向往,听余老师讲过的几个故事后,更是对专职摄影家非常的敬佩。风光摄影,靠的就是天气和运气,一切都是需要等待,而且你也不知道这样的等待是
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- 计算机视觉产品推荐,个性化推荐:人工智能中的计算机视觉、NLP自然语言处理和个性化推荐系统哪个前景更好一些?...
这个问题直接回答的话可能还是有着很强的个人观点,所以不如先向你介绍一些这几个领域目前的研究现状和应用情况(不再具体介绍其中原理)你自己可以斟酌一下哪方面更适合自己个性化推荐。一.所谓计算机视觉,是指使用计算机及相关设备对生物视觉的一种模拟个性化推荐。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样[1]。现在人工智能的计算机视觉主要研究
- 基于深度学习的目标检测:从基础到实践
Blossom.118
机器学习与人工智能深度学习目标检测人工智能音视频语音识别计算机视觉机器学习
前言目标检测(ObjectDetection)是计算机视觉领域中的一个核心任务,其目标是在图像中定位和识别多个对象的类别和位置。近年来,深度学习技术,尤其是卷积神经网络(CNN),在目标检测任务中取得了显著进展。本文将详细介绍如何使用深度学习技术构建目标检测模型,从理论基础到代码实现,带你一步步掌握目标检测的完整流程。一、目标检测的基本概念(一)目标检测的定义目标检测是指在图像中识别和定位多个对象
- “显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象
步步咏凉天
计算机视觉人工智能
“显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象。它模拟的是人类视觉系统对视觉场景中“显著”区域的感知能力。显著性可以用于图像理解、目标检测、图像压缩、图像分割等多个任务。下面是对显著性在计算机视觉中的几个关键方面的解释:一、显著性检测(SaliencyDetection)显著性检测的目标是预测图像中最能吸引人注意的区域,通常输出一个与输
- 基于YOLOv8的火灾智能检测系统设计与实现
斟的是酒中桃
深度学习人工智能pyqtyolo
在各类安全事故中,火灾因其突发性强、破坏力大,一直是威胁人们生命财产安全的重大隐患。传统的火灾检测方式多依赖烟雾传感器、温度传感器等,存在响应滞后、易受环境干扰等问题。随着深度学习技术的飞速发展,基于计算机视觉的火灾检测方法凭借其实时性强、检测范围广等优势,逐渐成为研究热点。本文将简单介绍一款基于深度学习的火灾智能检测系统的设计与实现过程。一、系统整体设计本火灾智能检测系统旨在通过深度学习技术实现
- 物流3D工业相机:解锁自动化物流新纪元
在当今工业4.0浪潮中,物流自动化已成为企业提升效率、降低成本的战略核心。作为工业自动化领域的先锋,迁移科技凭借其先进的3D工业视觉技术,正重塑物流场景的运作模式。本文将从品牌介绍出发,深入剖析物流3D工业相机的应用价值,结合真实案例,揭示其如何从基础功能延伸至产业价值,助力企业实现智能化转型。迁移科技,工业视觉的引领者迁移科技成立于2017年,作为行业领先的3D工业相机和3D视觉系统供应商,已累
- 【I3D 2024】Deblur-GS: 3D Gaussian Splatting from Camera Motion Blurred Images
__星辰大海__
论文阅读计算机视觉算法人工智能
文章目录1.李群与李代数2.相机运动模糊建模3.相机运动轨迹近似3.1.线性插值3.2.三次样条插值3.3.K阶贝塞尔曲线插值1.李群与李代数参考博客:视觉SLAM十四讲-李群与李代数。2.相机运动模糊建模运动模糊产生的原因是:相机在曝光期间捕捉到了移动的物体或自身发生了移动,导致场景中某些像素在成像过程中不是来自单一点,而是多个位置的光线的混合。假设在时间[t0,t0+T][t_0,t_0+T]
- Hi,这是我爸爸
鬼魅清风
(总觉得写文字身上又多了那份被嘲的酸楚味,可是没办法,我就是喜欢写,就像小时候家里的白纸上都有我铅笔的痕迹。我对文字的概念是它应该是记录我们思想的工具,而不是卖弄才华的载体。)昨晚看了几集综艺《最美的时光》,大家都在感叹与父母相处的时间越来越少,我们再怎么争取终抵不过时间的刀锋。看他们纷纷举起相机拍下家人最美的样子时我也想,可我不喜欢拍照,但还是希望家人永远在我喜欢的事物中,那就留在我的文字中吧,
- 基于NanoDet的健身姿势纠正系统开发
YOLO实战营
人工智能NanoDet深度学习计算机视觉ui
1.引言在现代健身行业中,正确的运动姿势至关重要,不仅能提升训练效果,还能预防运动损伤。尤其是在进行一些高强度的力量训练时,如深蹲、俯卧撑等,错误的姿势可能导致肌肉不平衡或关节损伤。传统的健身姿势纠正方式依赖教练的人工指导,但随着人工智能技术的发展,使用计算机视觉和深度学习技术来进行姿势纠正,逐渐成为一种高效且可扩展的解决方案。本文将详细介绍如何基于NanoDet(一个轻量化目标检测模型)开发一个
- 回顾2023
星空梦想plus
学习轨迹总结
今年的思考我仔细回忆了下,今年我做了哪些事情呢,忙忙碌碌一整年,除了搬砖还是搬砖,记录了许多笔记,但知识点都碎了,对自己的提升很有限,随着时间的推移,很多灵感都以及消逝,对我这个记性不好的人来说,尤为致命且严重的,接下来的时间,我会打算在过年前,将零碎的知识花时间归总一下,将知识完善,巩固起来今年的成果1.对相机模块更加熟悉且得心应手,很多需求,问题都能凭借经验能够很快的分析,归类,流转,进行处理
- 小谈相机的学习过程
前言博主本人并非专职相机开发,还涉及系统的其他几个模块,虽然都属于owner,但是都还在学习探索的一个过程,自认为掌握还不够细致,此篇文章仅梳理,总结,印证自己近五年相机模块的一个学习过程,以及对后续相机学习的一个方向,讲的也是比较宽泛,后续有空的话会考虑挑几个实用且常见的一些应用流程详细讲一下,但也希望能挤出时间来,博主实在太忙了~1.CameraLV1我最早接触的相机肯定是高通Android系
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc