【阅读和学习代码】VoxelNet

文章目录

    • 将点特征 转换为 voxel 特征
    • 稀疏张量 到 稠密张量,反向索引
    • 参考博客

将点特征 转换为 voxel 特征

https://github.com/skyhehe123/VoxelNet-pytorch/blob/master/data/kitti.py

【Python】np.unique() 介绍与使用

self.T : # maxiumum number of points per voxel

    def preprocess(self, lidar):

        # shuffling the points
        np.random.shuffle(lidar)

        voxel_coords = ((lidar[:, :3] - np.array([self.xrange[0], self.yrange[0], self.zrange[0]])) / (
                        self.vw, self.vh, self.vd)).astype(np.int32)

        # convert to  (D, H, W)
        voxel_coords = voxel_coords[:,[2,1,0]]
        voxel_coords, inv_ind, voxel_counts = np.unique(voxel_coords, axis=0, \
                                                  return_inverse=True, return_counts=True)

        voxel_features = []

        for i in range(len(voxel_coords)):
            voxel = np.zeros((self.T, 7), dtype=np.float32)
            pts = lidar[inv_ind == i] # 落到同一个voxel上的 点
            if voxel_counts[i] > self.T:
                pts = pts[:self.T, :]
                voxel_counts[i] = self.T
            # augment the points
            voxel[:pts.shape[0], :] = np.concatenate((pts, pts[:, :3] - np.mean(pts[:, :3], 0)), axis=1)
            voxel_features.append(voxel)
        return np.array(voxel_features), voxel_coords

输入,输出解释
【阅读和学习代码】VoxelNet_第1张图片

稀疏张量 到 稠密张量,反向索引

https://github.com/skyhehe123/VoxelNet-pytorch/blob/master/voxelnet.py

和 chatgpt一起学习的代码:

import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.autograd import Variable
from config import config as cfg

# conv2d + bn + relu
class Conv2d(nn.Module):

    def __init__(self,in_channels,out_channels,k,s,p, activation=True, batch_norm=True):
        super(Conv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels,out_channels,kernel_size=k,stride=s,padding=p)
        if batch_norm:
            self.bn = nn.BatchNorm2d(out_channels)
        else:
            self.bn = None
        self.activation = activation
    def forward(self,x):
        x = self.conv(x)
        if self.bn is not None:
            x=self.bn(x)
        if self.activation:
            return F.relu(x,inplace=True)
        else:
            return x

# conv3d + bn + relu
class Conv3d(nn.Module):

    def __init__(self, in_channels, out_channels, k, s, p, batch_norm=True):
        super(Conv3d, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=k, stride=s, padding=p)
        if batch_norm:
            self.bn = nn.BatchNorm3d(out_channels)
        else:
            self.bn = None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)

        return F.relu(x, inplace=True)

# Fully Connected Network
class FCN(nn.Module):

    def __init__(self,cin,cout):
        super(FCN, self).__init__()
        self.cout = cout
        self.linear = nn.Linear(cin, cout)
        self.bn = nn.BatchNorm1d(cout)

    def forward(self,x):
        # KK is the stacked k across batch
        kk, t, _ = x.shape
        x = self.linear(x.view(kk*t,-1))
        x = F.relu(self.bn(x))
        return x.view(kk,t,-1)

# Voxel Feature Encoding layer
class VFE(nn.Module):

    def __init__(self,cin,cout):
        super(VFE, self).__init__()
        assert cout % 2 == 0
        self.units = cout // 2
        self.fcn = FCN(cin,self.units)

    def forward(self, x, mask): # x: [N, T, C] : # N:一个batch voxel 的数量,不固定
        # point-wise feauture
        pwf = self.fcn(x)
        #locally aggregated feature
        laf = torch.max(pwf,1)[0].unsqueeze(1).repeat(1,cfg.T,1) # laf:[N, T, cout // 2]
        # point-wise concat feature
        pwcf = torch.cat((pwf,laf),dim=2)
        # apply mask
        mask = mask.unsqueeze(2).repeat(1, 1, self.units * 2) # mask作用: 一个voxel T=35 个点,不够T个点则用0填充,但在计算时 不考虑这些0
        pwcf = pwcf * mask.float()

        return pwcf # [N, T, Cout]

# Stacked Voxel Feature Encoding
class SVFE(nn.Module):

    def __init__(self):
        super(SVFE, self).__init__()
        self.vfe_1 = VFE(7,32)
        self.vfe_2 = VFE(32,128)
        self.fcn = FCN(128,128)
    def forward(self, x):
        mask = torch.ne(torch.max(x,2)[0], 0)
        x = self.vfe_1(x, mask)
        x = self.vfe_2(x, mask)
        x = self.fcn(x)
        # element-wise max pooling
        x = torch.max(x,1)[0]
        return x 

# Convolutional Middle Layer
class CML(nn.Module):
    def __init__(self):
        super(CML, self).__init__()
        self.conv3d_1 = Conv3d(128, 64, 3, s=(2, 1, 1), p=(1, 1, 1))
        self.conv3d_2 = Conv3d(64, 64, 3, s=(1, 1, 1), p=(0, 1, 1))
        self.conv3d_3 = Conv3d(64, 64, 3, s=(2, 1, 1), p=(1, 1, 1))

    def forward(self, x): 
        x = self.conv3d_1(x)
        x = self.conv3d_2(x)
        x = self.conv3d_3(x)
        return x

# # Region Proposal Network
# class RPN(nn.Module):
#     def __init__(self):
#         super(RPN, self).__init__()
#         self.block_1 = [Conv2d(128, 128, 3, 2, 1)]
#         self.block_1 += [Conv2d(128, 128, 3, 1, 1) for _ in range(3)]
#         self.block_1 = nn.Sequential(*self.block_1)

#         self.block_2 = [Conv2d(128, 128, 3, 2, 1)]
#         self.block_2 += [Conv2d(128, 128, 3, 1, 1) for _ in range(5)]
#         self.block_2 = nn.Sequential(*self.block_2)

#         self.block_3 = [Conv2d(128, 256, 3, 2, 1)]
#         self.block_3 += [nn.Conv2d(256, 256, 3, 1, 1) for _ in range(5)]
#         self.block_3 = nn.Sequential(*self.block_3)

#         self.deconv_1 = nn.Sequential(nn.ConvTranspose2d(256, 256, 4, 4, 0),nn.BatchNorm2d(256))
#         self.deconv_2 = nn.Sequential(nn.ConvTranspose2d(128, 256, 2, 2, 0),nn.BatchNorm2d(256))
#         self.deconv_3 = nn.Sequential(nn.ConvTranspose2d(128, 256, 1, 1, 0),nn.BatchNorm2d(256))

#         self.score_head = Conv2d(768, cfg.anchors_per_position, 1, 1, 0, activation=False, batch_norm=False)
#         self.reg_head = Conv2d(768, 7 * cfg.anchors_per_position, 1, 1, 0, activation=False, batch_norm=False)

#     def forward(self,x):
#         x = self.block_1(x)
#         x_skip_1 = x
#         x = self.block_2(x)
#         x_skip_2 = x
#         x = self.block_3(x)
#         x_0 = self.deconv_1(x)
#         x_1 = self.deconv_2(x_skip_2)
#         x_2 = self.deconv_3(x_skip_1)
#         x = torch.cat((x_0,x_1,x_2),1)
#         return self.score_head(x),self.reg_head(x)


class VoxelNet(nn.Module):

    def __init__(self):
        super(VoxelNet, self).__init__()
        self.svfe = SVFE()
        self.cml = CML()
        # self.rpn = RPN()

    def voxel_indexing(self, sparse_features, coords): # sparse_features:[N, C]: # N: 一个batch voxel的数量,不固定
      
        dim = sparse_features.shape[-1]

        dense_feature = Variable(torch.zeros(dim, cfg.N, cfg.D, cfg.H, cfg.W).cuda()) # cfg.N = batch
        
        """
        这段代码的操作可以通过一个for循环来实现,但是需要注意,使用for循环的效率通常会比使用向量化操作低。下面是一个可能的实现:
        for i in range(len(coords)):
            dense_feature[:, coords[i,0], coords[i,1], coords[i,2], coords[i,3]] = sparse_features[i]

        这个for循环遍历coords的每一行(即每一个坐标),然后在dense_feature中找到对应的位置,将sparse_features中的对应元素赋给这个位置。这与原始代码的操作是一样的。
        但是,需要注意的是,这种方法的效率通常会比使用向量化操作低,特别是当处理大量数据时。在实际的代码中,我们通常会优先使用向量化操作,因为它们可以利用现代硬件的并行计算能力,从而大大提高计算效率
        
        
        
这是一种常见的将稀疏张量转换为密集张量的方法。在稀疏张量中,只存储非零元素和它们的位置,而在密集张量中,所有元素都被存储。
这段代码就是在将 sparse_features 中的元素放入 dense_feature 的对应位置,从而将稀疏表示转换为密集表示。
        """

        dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features
        # dense_feature:[C, B, D, H, W]
        return dense_feature.transpose(0, 1) # dense_feature:[B, C, D, H, W] # 这样就转换为稠密张量了 

    def forward(self, voxel_features, voxel_coords): # voxel_features:[N, T, C] # N:一个batch voxel的数量,每个voxel 35个点,每个点 C维
                                                    # voxel_coords:[N, 4] , [batch_id, x, y, z]
        # feature learning network
        vwfs = self.svfe(voxel_features)
        print(f"vwfs.shape = {vwfs.shape}") # [N, C]
        vwfs = self.voxel_indexing(vwfs,voxel_coords) # index 反向索引
        print(f"voxel_indexing ==> vwfs.shape = {vwfs.shape}") # 
        # convolutional middle network
        # cml_out = self.cml(vwfs)

        # region proposal network

        # merge the depth and feature dim into one, output probability score map and regression map
        # psm,rm = self.rpn(cml_out.view(cfg.N,-1,cfg.H, cfg.W))

        # return psm, rm


if __name__ == '__main__':
    model = VoxelNet()

    voxel_features = torch.rand(100, 35, 7)
    voxel_coords = torch.randint(low=0, high=10, size=(100, 4))

    model(voxel_features, voxel_coords)

参考博客

VoxelNet End-to-End Learning for Point Cloud Based 3D Object Detection 论文学习

VoxelNet:基于点云的端到端 3D 物体检测网络

你可能感兴趣的:(【阅读和学习代码】,学习)