共享锁(shared lock)
或读锁(read lock)
是共享的,或者说是相互不阻塞的。多个客户在同一时刻可以同时读取同一个资源,而互不干扰。
排他锁(exclusive lock)
和写锁(write lock)
是排他的,也就是说一个写锁会阻塞其他的写锁和读锁,这是出于安全策略的考虑,只有这样才能确保在给定的时间里,只有一个用户能执行写入,并防止其他用户读取正在写入的同一资源。
一种提高共享资源并发性的方式就是让锁对象更有选择性。尽量只锁定需要修改的部分数据,而不是所有的资源。更理想的方式是。只对修改的数据片进行精确的锁定。任何时候,在给定的资源上,锁定的数据量越少,则系统的并发程度越高,只要相互之间不发生冲突即可。
但是加锁也需要消耗资源,锁的各种操作,包括获得锁、检查锁是否已经解除、释放锁等,都会增加系统的开销。如果系统花费大量的时间来管理锁,而不是存取数据,那么系统的性能可能会因此受到影响。
所谓的锁策略
,就是在锁的开销和数据的安全性之间寻求平衡。Mysql存储引擎提供了可以实现自己的锁策略和锁粒度。
表锁
是Mysql中最基本的锁策略,并且是开销最小的策略。表锁会锁定整张表。一个用户在对表进行写操作(插入、删除、更新等),需要先获得写锁,这会阻塞其他用户对该表的所有读写操作。只有没有写锁时,其他读取的用户才能获得读锁,读锁之间是不相互阻塞的。
行级锁
可以最大程度地支持并发处理(同时也带来了最大的锁开销)。行级锁只在存储引擎层实现,而Mysql服务器层没有实现。服务器层完全不了解存储引擎中的锁实现。
事物就是一组原子性的SQL查询,或者说一个独立的工作单元。事务内的语句,要么全部执行成功,要么全部执行失败。事务的ACID概念:原子性(atomicity)
、一致性(consistency)
、隔离性(isolation)
和持久性(durability)
。
事物SQL demo:
START TRANSACTION;
SELECT balance FROM checking WHERE customer_id = 10233276;
UPDATE checking SET balance = balance - 200.00 WHERE customer_id = 10233276;
UPDATE savings SET balance = balance + 200.00 WHERE customer_id = 10233276;
COMMIT;
一个事务必须被视为一个不可分割的最小工作单元,整个事务的所有操作要么全部提交成功,要么全部失败回滚,对于一个事务来说,不可能只执行其中的一部分操作,这就是事务的原子性。
数据库总是从一个一致性的状态转换到另外一个一致性的状态。在前面的例子中,一致性确保了,即使在执行第三、四条语句之间时系统崩溃,支票账户中也不会损失200美元,因为事务最终没有提交,所以事务中所做的修改也不会保存到数据库中。
通常来说,一个事务所做的修改在最终提交以前,对其他事务是不可见的。在前面的例子中,当执行完第三条语句、第四条语句还未开始时,此时有另外一个账户汇总程序开始运行,则其看到的支票账户的余额并没有减去200美元。
一旦事务提交,则其所做的修改就会永久保存到数据库中。持久化是个有点模糊的概念,不可能做到100%持久性保证的策略。
就像锁粒度的升级会增加系统开销一样,这种事务的处理过程中额外的安全性,也会需要数据库系统做更多的额外工作:需要更强的CPU处理能力、更大的内存和更多的磁盘空间。
在 READ UNCOMMITED级别,事务中的修改,即使没有提交,对其他事务也都是可见的。事务可以读取未提交的数据,这也被称为脏读(Dirty Read)
。这个级别会导致很多问题,从性能上来说,READ UNCOMMITED 不会比其他的级别好太多,但却缺乏其他级别的很多好处,除非真的非常有必要的理由,一般很少使用。
大多数数据库系统的默认隔离级别都是READ COMMITED(但 Mysql不是)。READ COMMITED 满足前面提到的隔离性的简单定义:一个事务开始时,只能"看见"已经提交的事务所做的修改。换句话说,一个事务从开始直到提交之前,所做的任何修改对其他事务都是不可见的。这个级别有时候也叫作不可重复读(nonrepeatable read)
,因为两次执行同样的查询,可能会得到不一样的结果。
REPEATABLE READ 解决了脏读的问题。该级别保证了在同一事务中多次读取同样记录的结果是一致的。但是理论上,可重复读隔离级别还是无法解决另外一个幻读(Phantom Read)
的问题。所谓幻读,指的是当某个事务在读取某个范围内的记录时,另外一个事务又在该范围内插入了新的记录,当之前的事务再次读取该范围的记录时,会产生幻行(Phantom Row)。InnoDB 和 XtraDB 存储引擎通过多版本并发控制解决了幻读的问题。
SERIALIZABLE是最高的隔离级别。它通过强制事务串行执行,避免了前面说的幻读问题。简单来说,SERIALIZABLE会在读取的每一行数据上都加锁,所以可能导致大量的超时和锁争用的问题。在实际应用中也很少用到这个隔离级别,只有在非常需要确保数据的一致性而且可以接受没有并发的情况下,才考虑采用该级别。
隔离级别 | 脏读可能性 | 不可重复读可能性 | 幻读可能性 | 加锁读 |
---|---|---|---|---|
未提交读 | Yes | Yes | Yes | No |
提交读 | No | Yes | Yes | No |
可重复读 | No | No | Yes | No |
可串行化 | No | No | No | Yes |
脏读(dirty read)
:两个事务,一个事务读取到了另一个事务未提交的数据,这便是脏读。
幻读(phantom read)
:两个事务,事务A与事务B,事务A在自己执行的过程中,执行了两次相同查询,第一次查询事务B未提交,第二次查询事务B已提交,从而造成两次查询结果不一样,这个其实被称为不可重复读;如果事务B是一个会影响查询结果的insert操作,则好像新多出来的行像幻觉一样,因此被称为幻读。其他事务的提交会影响在同一个事务中的重复查询结果。
死锁是指两个或者多个事务在同一资源上相互作用,并请求锁定对方占用的资源,从而导致恶性循环的现象。当多个事务试图以不同的顺序锁定资源时,就可能产生死锁。多个事务同时锁定同一个资源时,也会产生死锁。且看下面的两个产生死锁的例子:
# 事务1
START TRANSAcTION;
UPDATE StockPrice SET close=45.50 WHERE stock_id=4 AND date='2002-05-01';
UPDATE StockPrice SET close=19.80 WHERE stock_id=3 AND date='2002-05-02';
COMMIT;
# 事务2
START TRANSAcTION;
UPDATE StockPrice SET high=20.12 WHERE stock_id=3 AND date='2002-05-02';
UPDATE StockPrice SET high=47.20 WHERE stock_id=4 AND date='2002-05-01';
COMMIT;
如果凑巧,两个事务都执行了第一条UPDATE语句,更新了一行数据,同时也锁定了改行数据,接着每个事务都尝试去执行第二条UPDATE语句,却发现该行已经被对方锁定,然后两个事务都等待对方释放锁,同时又持有对方需要的锁,则陷入死循环。除非有外部因素介入才可能解除死锁。为了解决这种问题,数据库系统实现了各种死锁检测和死锁超时机制。越复杂的系统,比如InnoDB存储引擎,越能检测到死锁的循环依赖,并立即返回一个错误。这种解决方式很有效,否则死锁会导致出现非常慢的查询。还有一种解决方式,就是当查询的时间达到锁等待超时的设定后放弃锁请求,这种方式通常来说不太好。InnoDB目前处理死锁的方法是:将持有最少行级排他锁的事务进行回滚(这是相对比较简单的死锁回滚算法)。
死锁发生以后,只有部分或者完全回滚其中一个事务,才能打破死锁。对于事务性的系统,这是无法避免的,所以应用程序在设计时必须考虑如何处理死锁。大多数情况下只需要重新执行因死锁回滚的事务即可。
事务日志可以帮助提高事务的效率,使用事务日志,存储引擎在修改表的数据的时候只需要修改其内存拷贝,再把该行为记录到持久在磁盘的事务日志中。而不用每次都将修改的数据本身持久到磁盘。事务日志采用的是追加方式,因此写日志的操作是磁盘上一小块区域的顺序IO,而不像随机IO需要磁盘在多个地方移动。所以采用事务日志的方式相对来说要快的多,事务日志持久后,内存中的修改在后台慢慢的刷回磁盘。期间如果系统发生崩溃,存储引擎在重启的时候依靠事务日志自动恢复这部分被修改数据。目前大多数存储引擎都是这样实现的,我们通常称之为预写式日志(Write-Ahead Logging)
,修改数据需要写两次磁盘。
MySQL提供了两种事务性的存储引擎:InnoDB
和NDB Cluster
。另外还有一些第三方存储引擎也支持事务,比较知名的包括XtraDB
和PBXT
。
MySQL默认操作模式就是autocommit自动提交模式。这就表示除非显式地开始一个事务,否则每个查询都被当做一个单独的事务自动执行。我们可以通过设置autocommit的值改变是否是自动提交autocommit模式。
mysql> SHOW VARIABLES LIKE 'AUTOCOMMIT';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.01 sec)
mysql> SET AUTOCOMMIT=1;
1或者ON表示启用,0或者OFF表示禁用。当AUTOCOMMIT=0时,所有的查询都是在一个事务中,直到显式地执行COMMIT提交或者ROLLBACK回滚,该事务结束,同时又开始了另一个新事务。修改AUTOCOMMIT对非事务型的表,比如MyISAM或者内存表,不会有任何影响。对这类表来说,没有COMMIT或者ROLLBACK的概念,也可以说是相当于一直处于AUTOCOMMIT启用的模式。
MySQL可以通过执行SET TRANSACTION ISOLATION LEVEL
命令来设置隔离级别。新的隔离级别会在下一个事务开始的时候生效。可以在配置文件中设置整个数据库的隔离级别,也可以只改变当前回话的隔离级别,MySQL能够识别所有的4个ANSI隔离级别,InnoDB引擎也支持所有的隔离级别。
mysql> SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITED;
可以认为MVCC
是行级锁的一个变种,但是它在很多情况下避免了加锁操作,因此开销更低。虽然实现机制有所不同,但大都实现了非阻塞的读操作,写操作也只锁定必要的行。
MVCC的实现是通过保存数据在某个时间点的快照来实现的:不管需要执行多长时间,每个事务看到的数据都是一致的。根据事务开始的时间不同,每个事务对同一张表,同一时刻看到的数据可能是不一样的。
InnoDB的MVCC,是通过在每行记录后面保存两个隐藏的列来实现的。一个保存了行的创建时的系统版本号
,一个保存行的过期(删除)时的系统版本号
。每开始一个事务系统版本号都会递增,事务开始时刻的系统版本号会作为事务的版本号。
SELECT
,InnoDB会根据以下两个条件检查每行记录:
INSERT
,InnoDB为新插入的每一行保存当前系统版本号作为行版本号。DELETE
,InnoDB为删除的每一行保存当前系统版本号作为行删除标识(第二个隐藏列的作用来了)。UPDATE
,InnoDB将更新后的列作为新的行插入数据库(并不是覆盖),并保存当前系统版本号作为该行的行版本号,同时保存当前系统版本号到原来的行作为行删除标识。乐观锁
:用数据版本(Version)记录机制实现,这是乐观锁最常用的一种实现方式。何谓数据版本?即为数据增加一个版本标识,一般是通过为数据库表增加一个数字类型的 “version” 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加1。当我们提交更新的时候,判断数据库表对应记录的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新,否则认为是过期数据。
悲观锁
:与乐观锁相对应的就是悲观锁了。悲观锁就是在操作数据时,认为此操作会出现数据冲突,所以在进行每次操作时都要通过获取锁才能进行对相同数据的操作,这点跟java中的synchronized很相似,所以悲观锁需要耗费较多的时间。另外与乐观锁相对应的,悲观锁是由数据库自己实现了的,要用的时候,我们直接调用数据库的相关语句就可以了。