- 让你秒懂 Vue .env 文件
_虾仁不眨眼_
Vue2vue.js前端javascript
在Vue.js项目中,.env文件用于配置环境变量,这些变量可以在开发、测试和生产环境中使用。VueCLI提供了一种机制,允许你为不同的环境定义不同的环境变量。以下是.env、.env.development和.env.production文件的用途和区别,以及如何使用它们。1..env文件.env文件是项目的默认环境变量文件,适用于所有环境。它包含通用的环境变量,这些变量在开发、测试和生产环境中
- 最新微信小程序面试题集结
江湖二哥
微信小程序前端面试小程序
1、微信小程序与H5的区别?第一条是运行环境的不同传统的HTML5的运行环境是浏览器,包括webview,而微信小程序的运行环境并非完整的浏览器,是微信开发团队基于浏览器内核完全重构的一个内置解析器,针对小程序专门做了优化,配合自己定义的开发语言标准,提升了小程序的性能。第二条是开发成本的不同只在微信中运行,所以不用再去顾虑浏览器兼容性,不用担心生产环境中出现不可预料的奇妙BuG第三条是获取系统级
- SpringBoot 整合 Avro 与 Kafka
m0_74823408
面试学习路线阿里巴巴springbootkafkalinq
优质博文:IT-BLOG-CN【需求】:生产者发送数据至kafka序列化使用Avro,消费者通过Avro进行反序列化,并将数据通过MyBatisPlus存入数据库。一、环境介绍【1】ApacheAvro1.8;【2】SpringKafka1.2;【3】SpringBoot1.5;【4】Maven3.5;4.0.0com.codenotfoundspring-kafka-avro0.0.1-SNAP
- matlab 模糊pid实现温度控制
studyer_爱啃鸡爪的小米
Matlab系列案例matlab
1、内容简介matlab162-模糊pid实现温度控制可以交流、咨询、答疑2、内容说明略基于PID电加热炉温度控制系统设计摘要电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法
- Java 8 + Tomcat 9.0.102 的稳定环境搭建方案,适用于生产环境
无极低码
javajavatomcat开发语言
一、安装Java8安装OpenJDK8bashsudoaptupdatesudoaptinstallopenjdk-8-jdk-y验证安装bashjava-version应输出类似:openjdkversion“1.8.0_412”OpenJDKRuntimeEnvironment(build1.8.0_412-8u412-ga-1~22.04-b08)OpenJDK64-BitServerVM(
- 架构模式之黑板模式
weixin_30518397
c/c++游戏数据库
一、定义黑板模式是一种常用的架构模式,应用中的多种不同数据处理逻辑相互影响和协同来完成数据分析处理。黑板模式允许多个消息读写者同时存在,消息的生产者和消费者完全分开。这就像一个黑板,任何一个教授(消息的生产者)都可以在其上书写消息,任何一个学生(消息的消费者)都可以从黑板上读取消息,两者在空间和时间上可以解耦,并且互不干扰。这种模式对于没有确定解决方案策略的问题是有用的。二、模式组成黑板模式由3个
- 黑板模式(Blackboard Design Pattern)。
软件求生
黑板模式设计模式
意图黑板模式是观察者模式的一个扩展,知名度并不高,但是我们使用的范围却非常广。黑板模式的意图如下:允许消息的读写同时进行,广泛的交互消息。简单的说,黑板模式允许多个消息读写者同时存在,消息的生产者和消费者完全分开。这就像一个黑板,任何一个教授(消息的生产者)都可以在其上书写消息,任何一个学生(消息的消费者)都可以从黑板上读取消息,两者在空间和时间上可以解耦,并且互不干扰。黑板模式确实是消息的广播,
- 气候变化和人类活动对中国植被固碳的贡献量化数据(2001-2018)
树谷-胡老师
资源arcgis
气候变化和人类活动对中国植被固碳的贡献量化数据(2001-2018)数据分享:气候变化和人类活动对中国植被固碳的贡献量化数据(2001-2018)该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来.
人工智能
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 提出机器人自主学习新范式,深大团队最新顶会论文,刷新6大复杂任务SOTA
量子位
关注前沿科技量子位让机器人轻松学习复杂技能有新框架了!深圳大学大数据系统计算技术国家工程实验室李坚强教授团队联合鹏城国家实验室、北京理工莫斯科大学,提出了奖励函数与策略协同进化框架ROSKA。在多个高维度机器人任务上,在仅使用89%训练样本的情况下,比现有SOTA方法平均性能提升95.3%。众所周知,随着机器人技术的快速发展,其应用已渗透至日常生活和工业生产场景。然而在多自由度机器人控制领域,传统
- TensorRT-LLM保姆级教程-快速入门
大模型八哥
笔记agiai大模型ai大模型LLMTransformer
随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。另外,我撰写的大模型相关的博客及配套代码均整理放置在Github,有需要的朋友自
- BOE(京东方)绵阳“零碳工厂”探访活动圆满落幕 树立显示产业绿色转型新标杆
资讯分享周
人工智能大数据
2025年3月13日,BOE(京东方)“零碳工厂”探访活动在绵阳成功举办,此次活动邀请KOL及媒体代表齐聚京东方绵阳第6代柔性AMOLED生产线,深度探访国内显示行业首个“零碳工厂”。通过实地观摩与技术交流,BOE(京东方)全方位展示了其在绿色制造领域的突破性成果——从100%可再生能源覆盖到全流程碳足迹管理,从技术创新驱动减排到低碳模式行业复制,见证了公司多年来在可持续发展领域的持续投入与引领作
- 数据分布偏移检测:保障模型在生产环境中的稳定性
trust Tomorrow
机器学习python机器学习人工智能深度学习
数据分布偏移检测:保障模型在生产环境中的稳定性引言在机器学习系统从开发环境部署到生产环境的过程中,数据分布偏移问题是影响模型性能的主要挑战之一。当训练数据与生产环境中的数据分布不一致时,即使是经过精心调优的模型也可能表现出明显的性能下降。本文将深入探讨数据分布偏移的检测方法,并提供一套系统化的解决方案,帮助读者构建更加稳健的机器学习系统。1.数据分布偏移问题概述1.1分布偏移的类型数据分布偏移主要
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来
ai开发
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
深度学习
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- 基于AI编程,产品全流程变革的具体案例
xinxiyinhe
AI编程人工智能
一、制造业智能化生产案例1.长安汽车南京工厂通过部署AI驱动的柔性制造系统,工厂可在5分钟内切换生产不同型号的电动汽车底盘,并利用数字孪生技术实时模拟生产变量,将设备停机时间大幅缩短。AI算法结合历史订单数据、供应链状态等参数,自主生成最优生产计划,实现生产效率与灵活性的双重提升。2.隆基乐叶光伏制造首创基于图像特征的实时AI精准追溯技术,每18秒完成12个电池串异常识别,解决传统追溯准确率低的问
- Kafka 生产者与消费者的关系与应用场景分析
白.夜
kafkajson
在现代分布式系统中,ApacheKafka作为一个高性能的消息队列系统,在数据流转和处理方面扮演着至关重要的角色。Kafka采用了经典的生产者-消费者模式,极大地解耦了数据生成与数据消费的过程。本文将详细探讨Kafka中生产者与消费者的关系、常见问题以及Kafka在实际应用中的使用场景。1.Kafka中生产者与消费者的关系1.1生产者(Producer)生产者是Kafka系统中的一个客户端应用程序
- 浩方erp工厂制造业数字化的核心-erp生产管理系统-
haofang_software
数据库大数据个人开发人工智能sass
工厂制造业数字化的核心在于通过先进的企业ERP(EnterpriseResourcePlanning)生产管理系统实现全面的资源优化和流程自动化。浩方动力科技-haofangsoftware的工厂ERP系统,制造业行业管理erp系统,生产管理系统,能帮助各行业工厂、制造业实现采购、销售、生产、物控、库存、客户、供应商、财务、人力资源、设备等全方位的数字化管理,提高工厂生产效率,降低成本,并配合ME
- Vue3项目白屏问题深度解析:从AI辅助诊断到性能优化实战
TE-茶叶蛋
前端项目性能优化vueelementui
一、问题背景:令人困惑的白屏现象在开发一个基于Vue3+Vite+TypeScript的中后台管理系统时,我们遭遇了一个典型的性能问题:页面刷新后出现持续1-2秒的白屏,随后才正常渲染内容。尽管在index.html中加入了Loading动画,但动画结束后仍存在明显的空白间隙。关键现象特征:开发环境请求数达400+(Vite按需编译特性)生产环境构建后请求50+,资源总体积8.6MBDOMCont
- 大模型工程师学习日记(十五):Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析)
MMMMMMMay Love Code
学习bert人工智能深度学习自然语言处理全量微调
1.datasets库核心方法1.1.列出数据集使用datasets库,你可以轻松列出所有HuggingFace平台上的数据集:fromdatasetsimportlist_datasets#列出所有数据集all_datasets=list_datasets()print(all_datasets)1.2.加载数据集你可以通过load_dataset方法加载任何数据集:fromdatasetsim
- 大模型工程师学习日记(十四):检索增强生成(RAG)
MMMMMMMay Love Code
学习langchain深度学习人工智能开发语言
如何递归分割文本递归分割(recursively),这个文本分割器是用于通用文本的推荐工具。它接受一个字符列表作为参数。它会按顺序尝试在这些字符上进行分割,直到块足够小。默认的字符列表是["\n\n","\n","",""]。这样做的效果是尽可能保持所有段落(然后是句子,再然后是单词)在一起,因为这些通常看起来是语义上相关的文本块。文本如何分割:根据字符列表。块大小如何衡量:根据字符数量。下面我们
- C++设计模式-工厂模式:从原理、适用场景、使用方法,常见问题和解决方案深度解析
牵牛老人
C++专栏c++设计模式开发语言
一、工厂模式的核心原理工厂模式是一种创建型设计模式,其核心思想是通过将对象创建的职责从客户端代码中剥离,交由专门的工厂类来管理。这种模式通过"封装对象创建过程"特性,实现了以下设计原则:开放封闭原则工厂模式允许系统在不修改已有代码的前提下扩展新的产品类型。如处理器内核的生产案例中,新增型号只需扩展新工厂而非修改原有逻辑。单一职责原则创建对象的逻辑集中在工厂类中,客户端只需关注接口调用,避免了对象构
- 安全测试数据的分析、报告及业务应用
蚂蚁质量
安全测试质量体系安全网络web安全
一、安全测试指标与测量目标在风险分析和管理流程中,有效运用安全测试数据的前提是准确定义安全测试指标和测量目标。例如,通过统计安全测试中发现的漏洞总数,能够量化应用程序的安全状态,还可据此设定软件安全测试的目标,如在应用程序投入生产环境前,将漏洞数量降低至可接受的最低限度。另一个具有管理价值的目标是将应用程序的安全状态与安全基线进行对比,以此评估应用安全流程的改进情况。假设安全指标基线对应的是仅完成
- Spring Boot应用首次请求性能优化实战:从数据库连接池到JVM调优
一休哥助手
javaspringboot性能优化数据库
目录问题现象与背景分析性能瓶颈定位方法论数据库连接池深度优化SpringBean生命周期调优JVM层性能预热策略全链路监控体系建设生产环境验证方案总结与扩展思考1.问题现象与背景分析1.1典型问题场景在某互联网金融项目的SpringBoot应用上线后,运维团队发现一个关键现象:应用重启后首次访问提现接口耗时约1300ms后续请求稳定在200ms以内每日凌晨服务重启后,首笔交易超时率高达30%1.2
- AI Agent席卷B端:解锁部门效率新玩法,挑战企业软件的智能革命
Hello kele
人工智能经验分享AI编程程序员
随着人工智能技术的迅猛发展,AIAgent(人工智能代理)作为一种新兴的生产力工具,正在深刻改变企业软件生态。特别是在B端(面向企业端)的应用场景中,AIAgent的潜力逐渐显现。从最近Dify在GitHub上突破8万Star、进入开源领域Top100,到OpenManus几天内收获2万Star的惊人表现,开源AI项目的爆发式增长表明,在AI时代,优质的开源项目正以空前的速度吸引关注。与此同时,传
- 后端Web开发框架(Java)
测试人子期
软件测试测试开发java前端spring
SpringBoot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。讲的通俗一点就是SpringBoot并不是一个新的框架,它只是整合和默认实现了很多框架的配置方式。通过SpringBoot,可以轻松地创建独立的、基于生产级别的基于Spring的应用程序。为什么使用Spri
- 开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来!
人工智能
开源应用驱动企业新质生产力:Websoft9以EPP+AI+知识库助您领跑未来在数字化转型加速的今天,企业新质生产力的核心已从传统资源投入转向技术驱动的效率革命。开源应用凭借其灵活性、成本优势和技术创新力,成为企业实现这一目标的关键引擎。作为开源技术与行业场景化落地的领航者,Websoft9通过企业应用平台(EPP)、AI智能引擎与知识库系统三位一体的解决方案,助力企业快速构建新一代生产力工具,实
- KVM安全模块生产环境配置与优化指南
TechStack 创行者
#服务器容器Linux服务器运维安全kvmSELinux
KVM安全模块生产环境配置与优化指南一、引言在当今复杂多变的网络安全环境下,生产环境中KVM(Kernel-basedVirtualMachine)的安全配置显得尤为重要。本指南旨在详细阐述KVM安全模块的配置方法,结合强制访问控制(MAC)、硬件隔离及合规性要求,为您提供全面且深入的操作建议,确保KVM环境的安全性和稳定性。二、SELinux安全模块配置1.基础策略配置SELinux(Secur
- flask--基础知识点--6--flask高并发处理
Raging__Fire
#flaskpythonflask
Flask是一个轻量级的PythonWeb框架,适合构建中小型应用。但是,对于高并发场景,Flask本身可能需要一些辅助工具和配置来提升性能。以下是一些优化Flask应用以处理高并发的方法:1.使用WSGI服务器Flask自带的开发服务器性能和稳定性不足以应对生产环境中的高并发请求,可以考虑使用更强大的WSGI服务器,如:Gunicorn:一个基于Python的WSGIHTTP服务器。uWSGI:
- 如何提高Flask的高并发性能
BirdMan98
FlaskPythonflaskpython后端
提高Flask的并发性能可以从多个方面入手,主要包括服务器优化、数据库优化、代码优化和使用异步技术。下面详细介绍几种方法:1.使用高性能WSGI服务器Flask自带的开发服务器(flaskrun)不适用于生产环境。建议使用高性能WSGI服务器来运行Flask:推荐的WSGI服务器Gunicorn(推荐):适用于LinuxWaitress:适用于WindowsuWSGI:适用于Linux,性能更强,
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C