Table of Contents
一、中文版
二、英文版
三、My answer
四、解题报告
矩形蛋糕的高度为 h
且宽度为 w
,给你两个整数数组 horizontalCuts
和 verticalCuts
,其中 horizontalCuts[i]
是从矩形蛋糕顶部到第 i
个水平切口的距离,类似地, verticalCuts[j]
是从矩形蛋糕的左侧到第 j
个竖直切口的距离。
请你按数组 horizontalCuts
和 verticalCuts
中提供的水平和竖直位置切割后,请你找出 面积最大 的那份蛋糕,并返回其 面积 。由于答案可能是一个很大的数字,因此需要将结果对 10^9 + 7
取余后返回。
示例 1:
输入:h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3] 输出:4 解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色的那份蛋糕面积最大。
示例 2:
输入:h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1] 输出:6 解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色和黄色的两份蛋糕面积最大。
示例 3:
输入:h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3] 输出:9
提示:
2 <= h, w <= 10^9
1 <= horizontalCuts.length < min(h, 10^5)
1 <= verticalCuts.length < min(w, 10^5)
1 <= horizontalCuts[i] < h
1 <= verticalCuts[i] < w
horizontalCuts
中的所有元素各不相同verticalCuts
中的所有元素各不相同Given a rectangular cake with height h
and width w
, and two arrays of integers horizontalCuts
and verticalCuts
where horizontalCuts[i]
is the distance from the top of the rectangular cake to the ith
horizontal cut and similarly, verticalCuts[j]
is the distance from the left of the rectangular cake to the jth
vertical cut.
Return the maximum area of a piece of cake after you cut at each horizontal and vertical position provided in the arrays horizontalCuts
and verticalCuts
. Since the answer can be a huge number, return this modulo 10^9 + 7.
Example 1:
Input: h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3] Output: 4 Explanation: The figure above represents the given rectangular cake. Red lines are the horizontal and vertical cuts. After you cut the cake, the green piece of cake has the maximum area.
Example 2:
Input: h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1] Output: 6 Explanation: The figure above represents the given rectangular cake. Red lines are the horizontal and vertical cuts. After you cut the cake, the green and yellow pieces of cake have the maximum area.
Example 3:
Input: h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3] Output: 9
Constraints:
2 <= h, w <= 10^9
1 <= horizontalCuts.length < min(h, 10^5)
1 <= verticalCuts.length < min(w, 10^5)
1 <= horizontalCuts[i] < h
1 <= verticalCuts[i] < w
horizontalCuts
are distinct.verticalCuts
are distinct.class Solution:
def maxArea(self, h: int, w: int, horizontalCuts: List[int], verticalCuts: List[int]) -> int:
horizontalCuts.sort()
verticalCuts.sort()
# 选出纵向上最大的一块
gap_h = horizontalCuts[0]-0
for i in range(1,len(horizontalCuts)):
gap_h = max(gap_h,horizontalCuts[i]-horizontalCuts[i-1])
gap_h = max(gap_h,h-horizontalCuts[len(horizontalCuts)-1])
print(gap_h)
area = gap_h * w
# 选出横向上最大的一块
gap_w = verticalCuts[0]-0
for i in range(1,len(verticalCuts)):
gap_w = max(gap_w,verticalCuts[i]-verticalCuts[i-1])
gap_w = max(gap_w,w-verticalCuts[len(verticalCuts)-1])
print(gap_w)
area = area - (w-gap_w)*gap_h
area = area % (10**9 + 7)
return area
1、选出纵向上最大的一块,此时面积 area = gap_h * w,是选出的最大高度 gap 上所有 w 的面积。
2、选出横向上最大的一块
3、求面积时,要在宽度w 基础上减掉边边角角的地方的面积。