金融 博士书籍

金融博士书籍

A:数学分析 微分方程
微观金融学包括金融市场及金融机构研究、投资学金融工程学金融经济学、公司金融财务管理等方面,宏观金融学包括货币经济学货币银行学、国际金融学等方面,实证和数量方法包括数理金融学、金融计量经济学等方面,以下书目侧重数学基础、经济理论和数理金融学部分。
函数与分析

●集合论
☆Paul R. Halmos,Naive Set Theory 朴素集合论(美)哈莫斯(好书,深入浅出但过简洁)
集合论(英文版)Thomas Jech(有深度)
Moschovakis,Notes on Set Theory
集合论基础(英文版)——图灵原版数学·统计学系列(美)恩德滕
●数学分析
○微积分
☆Tom M. Apostol, Calculus vol Ⅰ&Ⅱ(数学家写的经典高等微积分教材/参考书,写法严谨,40年未再版,致力于更深刻的理解,去除微积分和数学分析间隔,衔接分析学、微分方程、线性代数、微分几何和概率论等的学习,学实分析的前奏,线性代数应用最好的多元微积分书,练习很棒,对初学者会难读难懂,但具有其他教材无法具备的优点。Stewart的书范围相同,也较简单。)
Carol and Robert Ash,The Calculus Tutoring Book(不错的微积分辅导教材)
★R. Courant, F. John, Introduction to Calculus and Analysis vol Ⅰ&Ⅱ(适合工科,物理和应用多)
Morris Kline,Calculus, an intuitive approach
Ron LarsonCalculus (With Analytic Geometry(微积分入门教材,难得的清晰简化,与Stewart同为流行教材)
《高等微积分》Lynn H.Loomis / Shlomo Stermberg
Morris Kline,Calculus: An Intuitive and Physical Approach(解释清晰的辅导教材)
Richard Silverman,Modern Calculus with Analytic Geometry
Michael,Spivak,Calculus(有趣味,适合数学系,读完它或者Stewart的就可以读Rudin的Principles of Mathematical Analysis或者Marsden的Elementary Classical Analysis,然后读Royden的Real Analysis学勒贝格积分和测度论或者Rudin的Functional Analysis学习巴拿赫和希尔伯特空间上的算子和谱理论)
James Stewart,Calculus(流行教材,适合理科及数学系,可以用Larson书补充,但解释比它略好,如果觉得难就用Larson的吧)
Earl W. Swokowski,Cengage Advantage Books: Calculus: The Classic Edition(适合工科)
Silvanus P. Thompson,Calculus Made Easy(适合微积分初学者,易读易懂)
○实分析(数学本科实变分析水平)(比较静态分析)
Understanding Analysis, Stephen Abbott,(实分析入门好书,虽然不面面俱到但清晰简明,Rudin, Bartle, Browder等人毕竟不擅于写入门书,多维讲得少)
★T. M. Apostol, Mathematical Analysis
Problems in Real Analysis 实分析习题集(美)阿里普兰斯,(美)伯金肖
☆《数学分析》方企勤,北大
胡适耕,实变函数
《分析学》Elliott H. Lieb / Michael Loss
★H. L. Royden, Real Analysis
W. Rudin, Principles of Mathematical Analysis
Elias M.Stein,Rami Shakarchi, Real Analysis:Measure Theory,Integration and Hilbert Spaces,实分析(英文版)
《数学分析八讲》辛钦
☆《数学分析新讲》张筑生,北大社 周民强,实变函数论,北大
☆周民强《数学分析》上海科技社
○测度论(与实变分析有重叠)
概率与测度论(英文版)(美)阿什(Ash.R.B.),(美)多朗-戴德(Doleans-Dade,C.A.)
☆Halmos,Measure Theory,测度论(英文版)(德)霍尔姆斯
○傅里叶分析(实变分析和小波分析各有一半)
小波分析导论(美)崔锦泰
H. Davis, Fourier Series and Orthogonal Functions
★Folland,Real Analysis:Modern Techniques and Their Applications
★Folland,Fourier Analysis and its Applications,数学物理方程:傅里叶分析及其应用(英文版)——时代教育.国外高校优秀教材精选 (美)傅兰德
傅里叶分析(英文版)——时代教育·国外高校优秀教材精选 (美)格拉法科斯
B. B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making
Katanelson,An Introduction to Harmonic Analysis
R. T. Seeley, An Introduction to Fourier Series and Integrals
★Stein,Shakarchi,Fourier Analysis:An Introduction
○复分析(数学本科复变函数水平)
L. V. Ahlfors, Complex Analysis ,复分析——华章数学译丛,(美)阿尔福斯(Ahlfors,L.V.)
★Brown,Churchill,Complex Variables and Applications Convey, Functions of One Complex Variable Ⅰ&Ⅱ
《简明复分析》龚升, 北大社
Greene,Krantz,Function Theory of One Complex Variable
Marsden,Hoffman,Basic Complex Analysis
Palka,An Introduction to Complex Function Theory
★W. Rudin, Real and Complex Analysis 《实分析与复分析》鲁丁(公认标准教材,最好有测度论基础)
Siegels,Complex Variables
Stein,Shakarchi,Complex Analysis 《复变函数》庄坼泰
●泛函分析(资产组合的价值)
○基础泛函分析(实变函数、算子理论和小波分析)
实变函数与泛函分析基础,程其衰,高教社
★Friedman,Foundations of Modern Analysis
《实变与泛函》胡适耕
《泛函分析引论及其应用》克里兹格 泛函分析习题集(印)克里希南 
Problems and methods in analysis,Krysicki
夏道行,泛函分析第二教程,高教社
★夏道行,实变函数与泛函分析
《数学分析习题集》谢惠民,高教社
泛函分析·第6版(英文版) K.Yosida
《泛函分析讲义》张恭庆,北大社
○高级泛函分析(算子理论)
J.B.Conway, A Course in Functional Analysis,泛函分析教程(英文版)
★Lax,Functional Analysis
★Rudin,Functional Analysis,泛函分析(英文版)[美]鲁丁 (分布和傅立叶变换经典,要有拓扑基础)
Zimmer,Essential Results of Functional Analysis
○小波分析
Daubeches,Ten Lectures on Wavelets
★Frazier,An Introduction to Wavelets Throughout Linear Algebra Hernandez,
《时间序列的小波方法》Percival
★Pinsky,Introduction to Fourier Analysis and Wavelets
Weiss,A First Course on Wavelets
Wojtaszczyk,An Mathematical Introduction to Wavelets Analysis
●微分方程(期权定价、动态分析)
○常微分方程和偏微分方程(微分方程稳定性,最优消费组合)
V. I. Arnold, Ordinary Differential Equations,常微分方程(英文版)(现代化,较难)
★W. F. Boyce, R. C. Diprima, Elementary Differential Equations and Boundary Value Problems
《数学物理方程》陈恕行,复旦
E. A. Coddington, Theory of ordinary differential equations
A. A. Dezin, Partial differential equations
L. C. Evans, Partial Differential Equations
丁同仁《常微分方程教程》高教
《常微分方程习题集》菲利波夫,上海科技社
★G. B. Folland, Introduction to Partial Differential Equations
Fritz John, Partial Differential Equations
《常微分方程》李勇
☆The Laplace Transform: Theory and Applications,Joel L. Schiff(适合自学)
G. Simmons, Differntial Equations With Applications and Historecal Notes
索托梅约尔《微分方程定义的曲线》
《常微分方程》王高雄,中山大学社
《微分方程与边界值问题》Zill
○偏微分方程的有限差分方法(期权定价)
福西斯,偏微分方程的有限差分方法
★Kwok,Mathematical Models of Financial Derivatives(有限差分方法美式期权定价)
★Wilmott,Dewynne,Howison,The Mathematics of Financial Derivatives (有限差分方法美式期权定价)
○统计模拟方法、蒙特卡洛方法Monte Carlo method in finance(美式期权定价)
★D. Dacunha-Castelle, M. Duflo, Probabilités et Statistiques II
☆Fisherman,Monte Carlo Glasserman,Monte Carlo Mathods in Financial Engineering(金融蒙特卡洛方法的经典书,汇集了各类金融产品)
☆Peter Jaeckel,Monte Carlo Methods in Finance(金融数学好,没Glasserman的好)
★D. P. Heyman and M. J. Sobel, editors,Stochastic Models, volume 2 of Handbooks in O. R. and M. S., pages 331-434. Elsevier Science Publishers B.V. (North Holland)
Jouini,Option Pricing,Interest Rates and Risk Management
★D. Lamberton, B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance(连续时间)
★N. Newton,Variance reduction methods for diffusion process :
★H. Niederreiter,Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Appl. Math. SIAM
★W.H. Press and al.,Numerical recepies.
★B.D. Ripley. Stochastic Simulation
★L.C.G. Rogers et D. Talay, editors, Numerical Methods in Finance. Publications of the Newton Institute.
★D.V. Stroock, S.R.S. Varadhan, Multidimensional diffusion processes
★D. Talay,Simulation and numerical analysis of stochastic differential systems, a review. In P. Krée and W. Wedig, editors, Probabilistic Methods in Applied Physics, volume 451 of Lecture Notes in Physics, chapter 3, pages 54-96.
★P.Wilmott and al.,Option Pricing (Mathematical models and computation).
Benninga,Czaczkes,Financial Modeling
○数值方法 、数值实现方法
Numerical Linear Algebra and Its Applications,科学社
K. E. Atkinson, An Introduction to Numerical Analysis
R. Burden, J. Faires, Numerical Methods
《逼近论教程》Cheney
P. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation, Cambridge Texts in Applied Mathematics
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts in Applied Mathematics
《数值逼近》蒋尔雄
《数值分析》李庆杨,清华
《数值计算方法》林成森
J. Stoer, R. Bulirsch, An Introduction to Numerical Analysis
J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations
L. Trefethen, D. Bau, Numerical Linear Algebra
《数值线性代数》徐树芳,北大
其他(不必)
《数学建模》Giordano
《离散数学及其应用》Rosen
《组合数学教程》Van Lint
◎几何学和拓扑学 (凸集、凹集)
●拓扑学
○点集拓扑学
★Munkres,Topology:A First Course《拓扑学》James R.Munkres
Spivak,Calculus on Manifolds
◎代数学(深于数学系高等代数)(静态均衡分析)
○线性代数、矩阵论(资产组合的价值)
M. Artin,Algebra
Axler, Linear Algebra Done Right
★Curtis,Linear Algeria:An Introductory Approach
W. Fleming, Functions of Several Variables
Friedberg, Linear Algebra Hoffman & Kunz, Linear Algebra
P.R. Halmos,Finite-Dimensional Vector Spaces(经典教材,数学专业的线性代数,注意它讲抽象代数结构而不是矩阵计算,难读)
J. Hubbard, B. Hubbard, Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach
N. Jacobson,Basic Algebra Ⅰ&Ⅱ
☆Jain《线性代数》
Lang,Undergraduate Algeria
Peter D. Lax,Linear Algebra and Its Applications(适合数学系)
G. Strang, Linear Algebra and its Applications(适合理工科,线性代数最清晰教材,应用讲得很多,他的网上讲座很重要)
●经济最优化
Dixit,Optimization in Economic Theory
●一般均衡
Debreu,Theory of Value
●分离定理
★Hildenbrand,Kirman,Equilibrium Analysis(均衡问题一般处理)
★Magill,Quinzii,Theory of Incomplete Markets(非完备市场的均衡)
★Mas-Dollel,Whinston,Microeconomic Theory(均衡问题一般处理)
★Stokey,Lucas,Recursive Methods in Economic Dynamics(一般宏观均衡)

B:概率论、数理统计、随机
◎概率统计
●概率论(金融产品收益估计、不确定条件下的决策、期权定价)
○基础概率理论(数学系概率论水平)
★《概率论》(三册)复旦
Davidson,Stochastic Limit Theory
Durrett,The Essential of Probability,概率论第3版(英文版)
★W. Feller,An Introduction to Probability Theory and its Applications概率论及其应用(第3版)——图灵数学·统计学丛书
《概率论基础》李贤平,高教
G. R. Grimmett, D. R. Stirzaker, Probability and Random Processes
☆Ross,S. A first couse in probability,中国统计影印版;概率论基础教程(第7版)——图灵数学·统计学丛书(例子多)
☆《概率论》汪仁官,北大
王寿仁,概率论基础和随机过程,科学社
☆《概率论》杨振明,南开,科学社
○基于测度论的概率论
测度论与概率论基础,程式宏,北大
★D. L. Cohn, Measure Theory
Dudley,Real Analysis and Probability
★Durrett,Probability:Theory and Examples
Jacod,Protter,Probability Essentials Resnick,A Probability Path
★Shirayev,Probability
严加安,测度论讲义,科学社
★钟开莱,A Course in Probability Theory
○随机过程微积分Introduction of diffusion processes (期权定价)
K. L. Chung, Elementary Probability Theory with Stochastic Processes
Cox,Miller,The Theory of Stochastic
★R. Durrett, Stochastic calculus
★黄志远,随机分析入门
黄志远 《随机分析学基础》科学社
姜礼尚,期权定价的数学模型和方法,高教社
《随机过程导论》Kao
Karlin,Taylor,A First Course in Stochastic Prosses(适合硕士生)
Karlin,Taylor,A Second Course in Stochastic Prosses(适合硕士生)
随机过程,劳斯,中国统计
☆J. R. Norris,Markov Chains(需要一定基础)
★Bernt Oksendal, Stochastic differential equations(绝佳随机微分方程入门书,专注于布朗运动,比Karatsas和Shreve的书简短好读,最好有概率论基础,看完该书能看懂金融学术文献,金融部分没有Shreve的好)
★Protter,Stochastic Integration and Differential Equations(文笔优美)
★D. Revuz, M. Yor, Continuous martingales and Brownian motion(连续鞅)
Ross,Introduction to probability model(适合入门)
★Steel,Stochastic Calculus and Financial Application(与Oksendal的水平相当,侧重金融,叙述有趣味而削弱了学术性,随机微分、鞅)
☆《随机过程通论》王梓坤,北师大
○概率论、随机微积分应用(连续时间金融)
Arnold,Stochastic Differential Equations
☆《概率论及其在投资、保险、工程中的应用》Bean
Damien Lamberton,Bernard Lapeyre. Introduction to stochastic calculus applied to finance.
David Freedman.Browian motion and diffusion.
Dykin E. B. Markov Processes.
Gihman I.I., Skorohod A. V.The theory of Stochastic processes基赫曼,随机过程论,科学
Lipster R. ,Shiryaev A.N. Statistics of random processes.
★Malliaris,Brock,Stochastic Methods in Economics and Finance
★Merton,Continuous-time Finance
Salih N. Neftci,Introduction to the Mathematics of Financial Derivatives
☆Steven E. Shreve ,Stochastic Calculus for Finance I: The Binomial Asset Pricing Model;II: Continuous-Time Models(最佳的随机微积分金融(定价理论)入门书,易读的金融工程书,没有测度论基础最初几章会难些,离散时间模型,比Naftci的清晰,Shreve的网上教程也很优秀)
Sheryayev A. N. Ottimal stopping rules.
Wilmott p., J.Dewynne,S. Howison. Option Pricing: Mathematical Models and Computations.
Stokey,Lucas,Recursive Methods in Economic Dynamics
Wentzell A. D. A Course in the Theory of Stochastic Processes.
Ziemba,Vickson,Stochastic Optimization Models in Finance
○概率论、随机微积分应用(高级)
Nielsen,Pricing and Hedging of Derivative Securities
Ross,《数理金融初步》An Introduction to Mathematical Finance:Options and other Topics
Shimko,Finance in Continuous Time:A Primer
○概率论、鞅论
★P. Billingsley,Probability and Measure
K. L. Chung & R. J. Williams,Introduction to Stochastic Integration
Doob,Stochastic Processes
严加安,随机分析选讲,科学
○概率论、鞅论Stochastic processes and derivative products(高级)
★J. Cox et M. Rubinstein : Options Market
★Ioannis Karatzas and Steven E. Shreve,Brownian Motion and Stochastic Calculus(难读的重要的高级随机过程教材,若没有相当数学功底,还是先读Oksendal的吧,结合Rogers & Williams的书读会好些,期权定价,鞅)
★M. Musiela - M. Rutkowski : (1998) Martingales Methods in Financial Modelling
★Rogers & Williams,Diffusions, Markov Processes, and Martingales: Volume 1, Foundations;Volume 2, Ito Calculus (深入浅出,要会实复分析、马尔可夫链、拉普拉斯转换,特别要读第1卷)
★David Williams,Probability with Martingales(易读,测度论的鞅论方法入门书,概率论高级教材)
○鞅论、随机过程应用
Duffie,Rahi,Financial Market Innovation and Security Design:An Introduction,Journal of Economic Theory
Kallianpur,Karandikar,Introduction to Option Pricing Theory
★Dothan,Prices in Financial Markets (离散时间模型)
Hunt,Kennedy,Financial Derivatives in Theory and Practice
何声武,汪家冈,严加安,半鞅与随机分析,科学社
★Ingersoll,Theory of Financial Decision Making
★Elliott Kopp,Mathematics of Financial Markets(连续时间)
☆Marek Musiela,Rutkowski,Martingale Methods in Financial Modeling(资产定价的鞅论方法最佳入门书,读完Hull书后的首选,先读Rogers & Williams、Karatzas and Shreve以及Bjork打好基础)
○弱收敛与随机过程收敛
★Billingsley,Convergence of Probability Measure
Davidson,Stochastic Limit Theorem
★Ethier,Kurtz,Markov Process:Characterization and Convergence Hall,Martingale Limit Theorems
★Jocod,Shereve,Limited Theorems for Stochastic Process
Van der Vart,Weller,Weak Convergence and Empirical Process
◎运筹学
●最优化、博弈论、数学规划
○随机控制、最优控制(资产组合构建)
Borkar,Optimal control of diffusion processes
Bensoussan,Lions,Controle Impulsionnel et Inequations Variationnelles
Chiang,Elements of Dynamic Optimization
Dixit,Pindyck,Investment under Uncertainty
Fleming,Rishel,Deterministic and Stochastic Optimal Control
Harrison,Brownian Motion and Stochastic Flow Systems
Kamien,Schwartz,Dynamic Optimization
Krylov,Controlled diffusion processes
○控制论(最优化问题)
●数理统计(资产组合决策、风险管理)
○基础数理统计(非基于测度论)
★R. L. Berger, Cassell, Statistical Inference
Bickel,Dokosum,Mathematical Stasistics:Basic Ideas and Selected Topics
★Birrens,Introdution to the Mathematical and Statistical Foundation of Econometrics
数理统计学讲义,陈家鼎,高教
★Gallant,An Introduction to Econometric Theory
R. Larsen, M. Mars, An Introduction to Mathematical Statistics
☆《概率论及数理统计》李贤平,复旦社
☆Papoulis,Probability,random vaiables,and stochastic process
☆Stone,《概率统计》
★《概率论及数理统计》中山大学统计系,高教社
○基于测度论的数理统计(计量理论研究)
Berger,Statistical Decision Theory and Bayesian Analysis
陈希儒,高等数理统计
★Shao Jun,Mathematical Statistics
★Lehmann,Casella,Theory of Piont Estimation
★Lehmann,Romano,Testing Statistical Hypotheses
《数理统计与数据分析》Rice
○渐近统计
★Van der Vart,Asymptotic Statistics
○现代统计理论、参数估计方法、非参数统计方法
参数计量经济学、半参数计量经济学、自助法计量经济学、经验似然

C:计量经济学、数理金融
统计学基础部分
1、《统计学》《探索性数据分析》 David Freedman等,中国统计 (统计思想讲得好)
2、Mind on statistics 机械工业 (只需高中数学水平)
3、Mathematical Statistics and Data Analysis 机械工业(这本书理念很好,讲了很多新东西)
4、Business Statistics a decision making approach 中国统计 (实用)
5、Understanding Statistics in the behavioral science 中国统计
回归部分
1、《应用线性回归》 中国统计 (蓝皮书系列,有一定的深度,非常精彩)
2、Regression Analysis by example,(吸引人,推导少)
3、《Logistics回归模型——方法与应用》 王济川 郭志刚 高教 (不多的国内经典统计教材)
多元
1、《应用多元分析》 王学民 上海财大(国内很好的多元统计教材)
2、Analyzing Multivariate Data,Lattin等 机械工业(直观,对数学要求不高)
3、Applied Multivariate Statistical Analysis,Johnson & Wichem,中国统计(评价很高)
《应用回归分析和其他多元方法》Kleinbaum
《多元数据分析》Lattin
时间序列
1、《商务和经济预测中的时间序列模型》 弗朗西斯著(侧重应用,经典)
2、Forecasting and Time Series an applied approach,Bowerman & Connell(主讲Box-Jenkins(ARIMA)方法,附上了SAS和Minitab程序)
3、《时间序列分析:预测与控制》 Box,Jenkins 中国统计
《预测与时间序列》Bowerman
抽样
1、《抽样技术》 科克伦著(该领域权威,经典的书。不好懂——就算看得懂每个公式,未必能懂它的意思)
2、Sampling: Design and Analysis,Lohr,中国统计(讲了很多很新的方法,不好懂)
软件及其他
1、《SAS软件与应用统计分析》 王吉利 张尧庭 主编 (好书)
2、《SAS V8基础教程》 汪嘉冈编 中国统计(主要讲编程,没怎么讲统计)
3、《SPSS11统计分析教程(基础篇)(高级篇)》 张文彤 北京希望出版社
4、《金融市场的统计分析》 张尧庭著 广西师大(言简意赅)
◎经济和金融数学
◎计量经济学,时间序列分析(回归分析(用于套期保值分析),多元分析(主成份分析和因子分析(用于风险管理)))
John Y. Campbell, Andrew W. Lo, A. Craig MacKinlay, and Andrew Y. Lo ,The Econometrics of Financial Markets(金融经济学简明教材,不涉及宏观金融(宏观和货币经济学),不好读,需要一定经济学和金融学基础,水平没有Duffie和Cochrane的高)
★John H. Cochrane,Asset Pricing(易读,写法现代,需要必要金融经济学基础,读后可以看懂该领域论文,想学金融数学还是读Duffie的吧)
☆Russell Davidson,Econometric Theory and Methods (讲得最清晰的中级书,比格林的好读得多,虽然没林文夫的经典)
★Darrell Duffie,Dynamic Asset Pricing Theory(连续时间动态规划,虽然易读还是最好有泛函分析、测度论、随机微积分和向量空间优化知识基础,没有Hull的好读)
★Golderberg,A Course in Econometrics
☆William H. Greene ,Econometric Analysis(中级,应用计量经济学经典,难读,重点不突出,适合做参考书)
☆Gujarati,计量经济学(初级经典,易读但有点老旧)
☆林文夫Fumio Hayashi,Econometrics(中级,理论计量经济学经典,头两章重要,要一定数学基础和良师导读,比格林书易读)
Helmut Lütkepohl,Markus Krātzig,Applied Time Series Econometrics,《应用时间序列计量经济学》
Ian Jacques,Mathematics for Economics and Business,《商务与经济数学》
B. Jerkins,Time Series Analysis:Forecasting & Control
☆Peter Kennedy, A Guide to Econometrics(绝佳初级教材,通俗易懂,不次于伍德里奇的《现代方法》)皮特,《计量经济学指南》
☆平狄克《计量经济模型与经济预测》Econometric Models and Economic Forecasts
平狄克《不确定性下的投资》
Roger Myerson, Curt Hinrichs, Probability Models for Economic Decision,《经济决策的概率模型》
★J. H. Stock, M. W. Watson, Introduction to Econometrics
A. H. Studenmund,Introductory Econometrics with Applications,《应用计量经济学》(基础性)
T. J. Watsham, K. Parramore《金融数量方法》
★Jeffrey Wooldridge,Introductory Econometrics: A Modern Approach (初级,不侧重数学推理,可自学,适合经济类专业,不适合统计专业,Kennedy的书不次于它,古扎拉底的书比它深一些)
☆Wooldridge 伍德里奇,Econometric Analysis of Cross Section and Panel Data 《横截面与面板数据的计量经济学分析》(微观计量理论的经典,Green和Hayashi两本书的补充,需要初级或中级基础,易读)
邵宇《微观金融学及其数学基础》清华社
○时间序列建模、时间序列分析及其算法研究
McKenzie,Research Design Issues in Time-Series Modeling of Financial Market Volatility
Watsham,Parramore,Quantitative Methods in Finance
○数理金融学Econometrics of Finance
Abramowitz,Stegun,Handbook of Mathematical Functions
Briys,Options,Futures and Exotic Derivatives
★Brockwell, P. and Davis, Time series : theory and methods
☆《金融计量经济学导论》克里斯·布鲁克斯(Chris Brooks)
★Campbell, J.Y., A.W. Lo and A.C. MacKinlay, The econometrics of financial markets(消费的资本资产定价模型)
Cox,Huang,Option Pricing and Application,Frontiers of Financial Theory
Dempster,Pliska,Mathematics of Derivative Securities
☆Walter Enders, Applied Econometric Time Series(时间序列分析绝佳入门书,比汉密尔顿的经典易读得多)
★Gourieroux, G., ARCH models and financial applications
★James Douglas Hamilton, Time series analysis《时间序列分析》汉密尔顿(时间序列经典,侧重理论技术,不适合初学,需要一定基础,统计和经济都可用)
★Hamilton, J. and B. Raj, (Eds), Advances in markov switching models
Karatzas,Lectures on the Mathematics of Finance
★Lardic S., V. Mignon, Econométrie des séries temporelles macroéconomiques et financières. Economica.
★《连续时间金融》罗伯特·莫顿(Robert Merton)Continuous time finance
★Mills, T.C., The econometric modelling of financial time series
★Muselia,Rutkowski,Martingale Models in Financial Modeling(连续时间、期权定价)
★Pliska,Introduction to Mathematical Finance:Discrete Time Models(离散时间模型高级教材) 数理金融学引论——离散时间模型
★Reinsel, G., Elements of multivariate time series analysis
《金融数学》Stampfli
☆Ross,An Introduction to Mathematical Finance:Options and other Topics, Ross S. M., 《数理金融初步》罗斯(Sheldon M.Ross)(投资组合)
Schachermayer,Introduction to the Mathematics of Financial Markets
★Tsay, R.S., Analysis of financial time series《金融时间序列分析》蔡瑞胸(Ruey S.Tsay)(美)
软件:
1、EViews
2、SAS
◎微观经济学
★马斯·科莱尔《微观经济学》Andreu Mas-Colell Green, Microeconomic Theory (高级顶尖,微观的百科全书。一般均衡讲得好,适合学完微分方程、实分析和线性代数的经济系学生,商科学生能大部分领会就很可以啦。博弈论部分要结合Kreps书和Tirole《产业组织理论》来看)
☆《高级微观经济理论》Advanced Microeconomic Theory杰里/瑞尼 Geoffrey A. Jehle / Philip J. Reny (高级入门,前半部分写得好,仅次于范里安,博弈论一般但简洁。没有马斯科莱尔的全面和艰深,简洁准确易懂,两书相得益彰。比范里安和尼科尔森的分析深入,不想复杂地学高微就用它吧)
☆A Course in Microeconomic,David M. Kreps(高级,侧重博弈论方法,其他一般,写法轻松而严谨欠缺,马斯科莱尔的补充)
★曼昆《经济学原理》(初级)
☆Walter Nicholson etl,Microeconomic Theory: Basic Principles and Extensions(让你很容易地掌握和爱上微观,中级平狄克向高级马斯科莱尔的过渡,博弈论薄弱些)
★平狄克Robert Pindyck《微观经济学》Microeconomics(中级,通俗简单,涉及了微观的各个方面,如博弈论和定价策略。适合初学,侧重应用,数学与理论分析偏少,让人知其然但不知其所以然。作为中级薄弱一些,适合商科中级)
★萨缪尔森《经济学》(初级,但数学推理多)
★斯蒂格利茨《经济学》(初级)
★范里安《微观经济学:现代观点》Intermediate Microeconomics: A Modern Approach(中级,数学太少)
★范里安《微观经济学高级教程》(高级基础,太短,用语言而不是数学来解释概念,前半部分好,适合自学,单看意义不大,要先范里安再Kreps再科莱尔)Hal R. Varian,Microeconomic Analysis
☆张五常:《卖桔者言》(入门)
◎宏观经济学
奥伯斯法尔德、若戈夫:《高级国际金融学教程》Foundations of International Macroeconomics by Maurice Obstfeld and Kenneth S. Rogoff(写法还可提高,高级,作者知名,应用和练习很多,比克鲁格曼的难)
★Robert J. Barro, Economic Growth
★Olivier Blanchard布兰查德《宏观经济学》Macroeconomics(适合金融或经济学专业,数学比曼昆的难,有中级代数、三角学及非微积分统计,习题没答案,其他专业还是看曼昆吧。作为中级好像难度大点(当然高级的数学更难),体系清楚)
布兰查德Olivier Jean Blanchard《宏观经济学讲义》Lectures on Macroeconomics(高级)(宏观和货币经济学,作为高级太简单)
Dennis R. Appleyard,Alfred J. Field,《国际经济学》
★多恩布什《宏观经济学》(中级)
☆克鲁格曼《国际经济学》(中级)
☆《经济动态的递归方法》卢卡斯 (高宏最顶尖教材) recursive method in economics dynamics by Robert E. Lucas
★曼昆N. Gregory Mankiw《宏观经济学》Macroeconomics(中级,清晰简明,像他的《原理》尽量简单化,但是没有付出怎会获得?还是布兰查德和多恩布什的专业些,再深的就是罗默了。)
★《高级宏观经济学》戴维.罗默 (高级入门) Advanced Macroeconomics by David Romer(覆盖面广,宏观模型多,分析质量高,数学多解释少,数学可以再简明些,易引起混乱,开放的宏观经济学这本不够,不适合作核心中级课本)
★萨尔瓦多《国际经济学》
☆萨金特《动态宏观经济理论》(高宏基础教材) Recursive Macroeconomic Theory by Lars Ljungqvist Thomas I. Sargent
萨克斯《全球视角的宏观经济学》
《金融经济学》
◎经济史/经济思想史
《西欧金融史》
《美国经济史》剑桥
《经济分析史》
埃克伦德、赫伯特:《经济理论和方法史》
Roger E. Backhouse,The History of Economic
Stanley L. Brue,The Evolution of Economic Thought,《经济思想史》
斯皮格尔:《经济思想的成长》
《经济学中的分析方法》Akira Takayama
Michael Todaro,Stephen Smith,Economic Development,《发展经济学》
◎金融学
Allen,Santomero,The Theory of Financial Intermediation,Journal of Banking and Finance
★《金融学》 滋维·博迪(Zvi bodie),罗伯特·莫顿(Robert Merton)
★《投资学》滋维·博迪(Zvi bodie),亚历克斯·凯恩(Alex Kane),艾伦·马库斯(Alan Marcus)Investments(资本市场投资、利率及贴现)
Bodie,Essentials of Investments
Dubofsky,Options and Financial Futures:Valuation and Uses
Dunbar,Invent Money:The Story of Long-Term Capital Management and the Legend behind it
★Erichberger,Harper,Financial Economics
Fabozzi,Foundations of Financial Markets and Institutions
James,Webber,Interest Rate Modiling
★Jarrow,Finance Theory
★LeRoy,Werner,Principals of Financial Economics(均值方差方法)
★马杜拉《金融市场和结构》
Malkiel,A Random Walk Down Wall Street
Mayer,Money,Banking and the Economy 梅耶《货币、银行与经济》
McMillan,McMillan on Options
Mel’nikov,Financial Market-Stochastic Analysis and the Pricing of Derivative Securities
米什金《货币银行学》
Naftci,Investment Banking,and Securities Trading
Nassim,Taleb,Dynamic Hedging
Pelsser,Efficient Methods for Valuing Internet Rate Derivatives
Ritchken,Theory,Strategy and Applications
Santomero,Financial Markets,Instruments and Institutions
Saunders,Financial Institutions Management:A Modern Perspective
★《投资学》威廉·F·夏普(William F.Sharpe),戈登·J·亚历山大(Gordon J.Alexander),杰弗里·V·贝利(Jeffery V.Bailey)Investments(资本市场投资、利率及贴现)
Shefrin,Behavioral Finance
《货币理论与政策》Carl E. Walsh
Willmott,Dewynne,Howison,The Mathematics of Financial Deribatives
Zhang,Exotic Options
公司金融
Bernstein,Capital Idea:The Improbable Origins of Modern Wall Street
Scott Besley, Eugene F. Brigham, Essentials of Managerial Finance《财务管理精要》
Richard A. Brealey, Stewart C. Myers, Principles of Corporate Finance《公司财务原理》
Brennan,The Theory of Corperate Finance
Burroughs,Helyar,Barbarians in the Gate:The Fall of RJR Nabisco
Copeland,Financial Theory and Corporate Policy
Damodaran,Applied Corporate Finance:A User’s Manual
Damodaran,Corporate Finance:Theory and Practice
Emery,Finnerty,Corporate Financial Management
☆《公司理财》斯蒂芬·A.罗斯(Stephen A.Ross),罗德尔福W.威斯特菲尔德(Radolph W.Wdsterfield),杰弗利F.杰富(Jeffrey F.Jaffe)
☆《公司金融理论》让·梯若尔(Jean Tirole)
Valuation:Measuring and Managing the Value of Companies
1.理论金融
资产定价:
★Duffie,Futures Markets(远期合约和期货合约)
Duffie: security market
★《金融经济学基础》黄奇辅(Chi-fu Huang),罗伯特·鲍勃·李兹森伯格(Robert H. Litzenberger)Foundation for financial economics
★Ingersoll: Theorey of financial decision making
Ross: Neoclassical Finance
      
证券承销:
公司并购:
  
  2.入门和综合类
  
Amman: Credit risk valuation
★Baxter M., Rennie A., Financial Calculus : An Introduction to Derivative Pricing(金融工程必读书,循序渐进地介绍随机微积分,金融偏微分方程还是看Willmott吧,侧重理论,仅需基本的微积分和概率论基础)《金融数学衍生产品定价导论》
Bielecki, Rutkowski: Credit Risk : Modeling , Valuation and Hedging
★Tomas Bjork: Arbitrage theory in continuous time(Hull的后续中级书,连续时间、期权定价)
Cvitanic, Zapatero: Introduction to the economics and mathematics of financial markets
★Dana,Jeanblanc,Financial Markets in Continuous Time(连续时间)
Duffie Singleton: Credit Risk
★Elliott, Kopp: Mathematics of Financial markets
★Fouque,Papanicolau,Derivatives in Financial Markets with Stochastic Volatility(随机波动率)
★Gourieroux,ARCH Models and Financial Applications(ARCH模型和GARCH模型)
★Harris:Trading and Exchanges: Market Microstructure for Practitioners(详述不同类型证券交易)
★Options, Futures, and Other Derivatives《期权、期货和其他衍生品》约翰·赫尔(John C.Hull) (衍生品和数理金融初级经典教材,期货和期权市场组织、远期合约和期货合约、期权定价、期权交易)
Hull,J. C.,Risk Management and Financial Insititutions《风险管理与金融机构》
★Karatzas Shreve: Methods of mathematical finance(美式期权、随机微分、连续时间动态规划、鞅、连续时间模型高级教材)
☆Lawrence G. McMillan,Options as a Strategic Investment
Rrederic S. Mishkin, Financial Markets and Institutions《金融市场与金融机构》
★米什金《货币银行和金融市场经济学》
★Nelken,Pricing,Hedging,and Trading Exotic Options(奇异期权)
☆Sheldon Natenberg,Option Volatility & Pricing: Advanced Trading Strategies and Techniques
Edgar A. Norton,Introduction to Finance:Markets,Investments and Financial Management《金融学导论:市场、投资与财务管理》
★Lewis,Option Valuation under Stochastic Volatility:with Mathemetical Code(随机波动率)
☆《金融工程原理》 萨利赫.内福斯(Salih N.Neftci)
Peter Rose, Sylvia C. Hudgins, Commercial Bank Management《商业银行管理》
Peter S. Rose, Money and Capital Markets《金融市场学》
Shreve:Stochastic Calculus Models for Finance vol 1 & 2
Taleb:Dynamic Hedging
Lloyd B. Thomas, Money, Banking, and Financial Markets《货币,银行业与金融市场》
☆《金融经济学》 王江
Robert E. Whaley, Derivatives: Markets, Baluation, and Risk Management《衍生工具》
Paul Wilmott, Paul Wilmott introduces quantitative finance《金融计量经济学》
Wilmott P.: quantitative finance(利率模型)
★Wilmott P.,Derivatives:The Theory and Practice of Financial Engineering(期权定价,偏微分方程方法用得好)
      
  3. 固定收益
★Bielecki,Rutkowski,Credit Risk:Modeling,Valuation and Hedging(违约风险高级教材)
★Brigo,Mercurio,Interest Rate Models:Theory and Practice(固定收益证券和利率衍生产品)  
Cherubini,Copula Methods in Finance
Haung,zhang,Option Pricing Formulas
Hayre: Salomon Smith Barney Guide to Mortgage-Backed and Asset-Backed Securities Lando,Credit Risk
Lewis,Option Valuation in Stochastic vol
Lipton,Mathematical Methods for Foreign Exchange
★Martellini,Priaulet,Fixed-Income Securities:Dynamic Methods for Interest Rate Risk Pricing and Hedging(固定收益债券、利率衍生产品)
★Martellini,Priaulet Fixed-Income Securities:Valuation,Risk Management and Portfolio Strategies(固定收益债券、利率衍生产品)
Mecurio,Fabio,Interest Rate Models and Practice
★Pelsser,Efficient Methods for Valuing Interest Rate Derivatives(固定收益证券和利率衍生产品) Schonbucher,Credit Derivatives Pricing Models
★Sundaresan,Fixed Income Markets and Their Derivaties(固定收益债券、利率衍生产品)森达里桑《固定收入证券市场及其衍生产品》
Tavakoli: Collateralized Debt Obligations and Structured Finance
Tavakoli: Credit Derivatives & Synthetic Structures: A Guide to Instruments and Applications
Tuckman: Fixed Income Securities: Tools for Today’s Markets

你可能感兴趣的:(随机过程与随机分析,线性代数,概率论,机器学习)