今天结束后,剩下DP大头了
目录
代码随想录day37
738.单调递增的数字
714. 买卖股票的最佳时机含手续费
968.监控二叉树
贪心算法总结
题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。
例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
这一点如果想清楚了,这道题就好办了。
局部最优:遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]--,然后strNum[i]给为9,可以保证这两位变成最大单调递增整数。
全局最优:得到小于等于N的最大单调递增的整数。
但这里局部最优推出全局最优,还需要其他条件,即遍历顺序,和标记从哪一位开始统一改成9。此时是从前向后遍历还是从后向前遍历呢?
从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。
这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。
所以从前后向遍历会改变已经遍历过的结果!
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299
确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。
Go代码如下:
func monotoneIncreasingDigits(N int) int {
s := strconv.Itoa(N)//将数字转为字符串,方便使用下标
ss := []byte(s)//将字符串转为byte数组,方便更改。
n := len(ss)
if n <= 1 {
return N
}
for i:=n-1 ; i>0; i-- {
if ss[i-1] > ss[i] {//前一个大于后一位,前一位减1,后面的全部置为9
ss[i-1] -= 1
for j := i ; j < n; j++ {//后面的全部置为9
ss[j] = '9'
}
}
}
res, _ := strconv.Atoi(string(ss))
return res
}
在贪心算法:122.买卖股票的最佳时机II
中使用贪心策略不用关心具体什么时候买卖,只要收集每天的正利润,最后稳稳的就是最大利润了。
而本题有了手续费,就要关系什么时候买卖了,因为计算所获得利润,需要考虑买卖利润可能不足以手续费的情况。
如果使用贪心策略,就是最低值买,最高值(如果算上手续费还盈利)就卖。
此时无非就是要找到两个点,买入日期,和卖出日期。
所以我们在做收获利润操作的时候其实有三种情况:
贪心算法Go代码如下:
func maxProfit(prices []int, fee int) int {
buy := prices[0] + fee
profit := 0
for i:=1;i buy { // 该出手了
profit += prices[i] - buy
buy = prices[i] // 留一手
}
}
return profit
}
本题贪心的思路其实是比较难的,动态规划才是常规做法,但也算是给大家拓展一下思路,感受一下贪心的魅力。
后期我们在讲解 股票问题系列的时候,会用动规的方式把股票问题穿个线
给定一个二叉树,我们在树的节点上安装摄像头。节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。计算监控树的所有节点所需的最小摄像头数量。
这道题目首先要想,如何放置,才能让摄像头最小的呢?
从题目中示例,其实可以得到启发,我们发现题目示例中的摄像头都没有放在叶子节点上!
这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。
所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。
那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?
因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。
所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
局部最优推出全局最优,找不出反例,那么就按照贪心来!
此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
此时这道题目还有两个难点:
在二叉树中如何从低向上推导呢?
可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。
后序遍历代码如下:
func traversal(root *TreeNode) {
// 空节点,该节点有覆盖
if (终止条件) return
left := traversal(cur.left); // 左
right := traversal(cur.right); // 右
逻辑处理 // 中
return
}
注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态
此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:
有如下三种:
我们分别有三个数字来表示:
大家应该找不出第四个节点的状态了。
一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。
因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?
回归本质,为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。
那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。
所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了
接下来就是递推关系。
那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖),原因上面已经解释过了。
代码如下:
// 空节点,该节点有覆盖
if cur == NULL) {
return 2
}
递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。
主要有如下四类情况:
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
如图:
代码如下:
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
如果是以下情况,则中间节点(父节点)应该放摄像头:
left == 0 && right == 0 左右节点无覆盖
left == 1 && right == 0 左节点有摄像头,右节点无覆盖
left == 0 && right == 1 左节点有无覆盖,右节点摄像头
left == 0 && right == 2 左节点无覆盖,右节点覆盖
left == 2 && right == 0 左节点覆盖,右节点无覆盖
这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。
代码如下:
if (left == 0 || right == 0) {
result++;
return 1;
}
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
left == 1 && right == 2 左节点有摄像头,右节点有覆盖
left == 2 && right == 1 左节点有覆盖,右节点有摄像头
left == 1 && right == 1 左右节点都有摄像头
代码如下:
if (left == 1 || right == 1) return 2;
从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:
这种情况也是大多数同学容易迷惑的情况。
•情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
以上四种情况我们分析完了,代码也差不多了,整体代码如下:
(以下我的代码注释很详细,为了把情况说清楚,特别把每种情况列出来。)
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
var res int
func minCameraCover(root *TreeNode) int {
res = 0
if dfs(root) == 1 {
// 如果最顶端的元素没有被安装,也没有被监视
// 那么这个节点需要安装一个摄像头
res ++
}
return res;
}
// 1未被监视, 2安装摄像头
// 一个c一个v骗骗自己罢了
func dfs(root *TreeNode) int {
// 最后一个节点不关心
if root == nil {
return 0
}
left := dfs(root.Left)
right := dfs(root.Right)
// 如果子节点没有被监视
if left == 1 || right == 1 {
// 安装摄像头
res++
return 2
}
// 如果子节点安装摄像头
if left == 2 || right == 2 {
// 标记被监视
return 3
}
return 1
}
没有总结。多刷题,最后一道还是不懂的。再学学吧。