semaphore也就是信号量,是一种进程见同步机制,我们可以作为互斥量来保护临界区资源,但是作为一种同步机制,还能怎么用呢?当然我们可以做进程间的同步使用,比如进程A和进程B,如果进程A要等待进程B完成某项工作后才能继续运行,那么可以使用信号量来操作,进程A先对一个信号量进行P操作(减少),然后运行到特定的地方再次尝试去P操作(减少),如果是普通的锁,此时就已经死锁了,因为锁的获取与释放只能由同一个进程来做,但是信号量并不是,它可以由另一个进程去进行V操作(增加信号量),从而达到释放的目的。另外一个关键的特点是,在semaphore保护的临界区中是允许睡眠的。一般我们会初始化信号量为1。
/**
* down - acquire the semaphore
* @sem: the semaphore to be acquired
*
* Acquires the semaphore. If no more tasks are allowed to acquire the
* semaphore, calling this function will put the task to sleep until the
* semaphore is released.
*
* Use of this function is deprecated, please use down_interruptible() or
* down_killable() instead.
*/
void down(struct semaphore *sem)
{
unsigned long flags;
raw_spin_lock_irqsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
else
__down(sem);
raw_spin_unlock_irqrestore(&sem->lock, flags);
}
Linux内核采用down作为P操作,count–其实也就是减少操作。这个API已经逐渐被弃用了,推荐使用后面的两种:
int down_interruptible(struct semaphore *sem)
{
unsigned long flags;
int result = 0;
raw_spin_lock_irqsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
else
result = __down_interruptible(sem);
raw_spin_unlock_irqrestore(&sem->lock, flags);
return result;
}
int down_killable(struct semaphore *sem)
{
unsigned long flags;
int result = 0;
raw_spin_lock_irqsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
else
result = __down_killable(sem);
raw_spin_unlock_irqrestore(&sem->lock, flags);
return result;
}
static noinline void __sched __down(struct semaphore *sem)
{
__down_common(sem, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
}
static noinline int __sched __down_interruptible(struct semaphore *sem)
{
return __down_common(sem, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
}
static noinline int __sched __down_killable(struct semaphore *sem)
{
return __down_common(sem, TASK_KILLABLE, MAX_SCHEDULE_TIMEOUT);
}
static noinline int __sched __down_timeout(struct semaphore *sem, long timeout)
{
return __down_common(sem, TASK_UNINTERRUPTIBLE, timeout);
}
最后都是通过__down_common这个函数来进行的操作:
static inline int __sched __down_common(struct semaphore *sem, long state,
long timeout)
{
struct semaphore_waiter waiter;
list_add_tail(&waiter.list, &sem->wait_list);
waiter.task = current;
waiter.up = false;
for (;;) {
if (signal_pending_state(state, current))
goto interrupted;
if (unlikely(timeout <= 0))
goto timed_out;
__set_current_state(state);
raw_spin_unlock_irq(&sem->lock);
timeout = schedule_timeout(timeout);
raw_spin_lock_irq(&sem->lock);
if (waiter.up)
return 0;
}
timed_out:
list_del(&waiter.list);
return -ETIME;
interrupted:
list_del(&waiter.list);
return -EINTR;
}
最后的函数是设置current进程状态,然后调用schedule_timeout进行调度。
对应这个Linux内核中的up操作,如果没有人在等待这个信号量,那么就对计数器加1操作来增加count值,如果有人在等待就唤醒一个等待的进程。
/**
* up - release the semaphore
* @sem: the semaphore to release
*
* Release the semaphore. Unlike mutexes, up() may be called from any
* context and even by tasks which have never called down().
*/
void up(struct semaphore *sem)
{
unsigned long flags;
raw_spin_lock_irqsave(&sem->lock, flags);
if (likely(list_empty(&sem->wait_list)))
sem->count++;
else
__up(sem);
raw_spin_unlock_irqrestore(&sem->lock, flags);
}
EXPORT_SYMBOL(up);
static noinline void __sched __up(struct semaphore *sem)
{
struct semaphore_waiter *waiter = list_first_entry(&sem->wait_list,
struct semaphore_waiter, list);
list_del(&waiter->list);
waiter->up = true;
wake_up_process(waiter->task);
}
唤醒操作是优先唤醒第一个等待的进程,从list head的第一个成员开始唤醒。