前面已经对串联匹配有了一定的了解,现在用它来改进 Opencv 的stitching ,
先找来三个博文为模板,分别是:
1。《任意n张图像拼接_效果很好_计算机视觉大作业1终版》
2。《 Opencv2.4.9源码分析——Stitching(八)》
3。《图像拼接(十):OPenCV stitching和stitching_detailed》中的“stitching_detailed使用示例”
把他们中的一些Mat 转化为opencv 3.0 用到的 UMat 。
为什么不直接用3.0的示例呢?主要是示例不太友好方便,修改地方太多,自己的e文也太差。
通过测试:
1文只有一种长宽比,改变长宽比就出错。
2文速度较慢,注解不错。
3文没有中文注解,但速度较快,所以就以3文为模板修改匹配。
针对3.0修改后为:
//stitching_detailed使用 3.0
//用串联匹配代替原匹配
//
#define ENABLE_LOG 1
#include
#include
#include
#include "opencv2/opencv_modules.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/util.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/warpers.hpp"
using namespace std;
using namespace cv;
using namespace cv::detail;
//
// 默认命令行参数
vector img_names;
bool preview = false;
bool try_gpu = true;
double work_megapix = 0.6;
double seam_megapix = 0.1;
double compose_megapix = -1;
float conf_thresh = 1.f;
string features_type = "orb";//"surf";
string ba_cost_func = "reproj";//重映射误差方法 "ray";//射线发散误差方法
string ba_refine_mask = "xxxxx";
bool do_wave_correct = true;
WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;// 波形校验,水平 // 波校正垂直 WAVE_CORRECT_VERT
bool save_graph = false;//是否保存匹配图
std::string save_graph_to;
string warp_type = "spherical";//球面投影
int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
float match_conf = 0.3f;
string seam_find_type = "gc_color";
int blend_type = Blender::MULTI_BAND;
float blend_strength = 5;
string result_name = "result.jpg";
void LoadImageNamesFromFile(char* name,vector& image_names);//从列表中载入图像名
void i_matcher(vector &features, vector &pairwise_matches);
int main(int argc, char* argv[])
{
//读入图像
double ttt = getTickCount();
cout<<"读出文件名..."<(img_names.size());
cout<<"有 "< finder;
if (features_type == "surf")
{
#if defined(HAVE_OPENCV_NONFREE) && defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
finder = new SurfFeaturesFinderGpu();
else
#endif
finder = new SurfFeaturesFinder();
}
else if (features_type == "orb")
{
finder = new OrbFeaturesFinder();
}
else
{
cout << "Unknown 2D features type: '" << features_type << "'.\n";
return -1;
}
Mat full_img, img;
vector features(num_images);
vector images(num_images);
vector full_img_sizes(num_images);
double seam_work_aspect = 1;
for (int i = 0; i < num_images; ++i)
{
full_img = imread(img_names[i]);
full_img_sizes[i] = full_img.size();
if (full_img.empty())
{
LOGLN("Can't open image " << img_names[i]);
return -1;
}
if (work_megapix < 0)
{
img = full_img;
work_scale = 1;
is_work_scale_set = true;
}
else
{
if (!is_work_scale_set)
{
work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
is_work_scale_set = true;
}
resize(full_img, img, Size(), work_scale, work_scale);
}
if (!is_seam_scale_set)
{
seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
seam_work_aspect = seam_scale / work_scale;
is_seam_scale_set = true;
}
(*finder)(img, features[i]);
features[i].img_idx = i;
//LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size());
cout<<"图像 #" << i+1 << "特征数: " << features[i].keypoints.size()<collectGarbage();
full_img.release();
img.release();
//LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
cout<<"寻找特征用时:"<< ((getTickCount() - t) / getTickFrequency()) << " 秒"< pairwise_matches;
BestOf2NearestMatcher matcher(try_gpu, match_conf);
//matcher(features, pairwise_matches);
//matcher.collectGarbage();
//这里用我们自己的匹配代替
i_matcher(features, pairwise_matches);
//LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
cout<<"成对匹配用时:"<< ((getTickCount() - t) / getTickFrequency()) << " 秒"< is_img_names;//string转化为Strig。
for(size_t i=0;i indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
vector img_subset;
vector img_names_subset;
vector full_img_sizes_subset;
for (size_t i = 0; i < indices.size(); ++i)
{
img_names_subset.push_back(img_names[indices[i]]);
img_subset.push_back(images[indices[i]]);
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
}
images = img_subset;
img_names = img_names_subset;
full_img_sizes = full_img_sizes_subset;
// 检查我们是否还有足够的图像
num_images = static_cast(img_names.size());
cout << "要拼接的图像数:" < cameras;//表示相机参数矢量队列
estimator(features, pairwise_matches, cameras);//相机参数评估
for (size_t i = 0; i < cameras.size(); ++i)
{
Mat R;
cameras[i].R.convertTo(R, CV_32F);
cameras[i].R = R;
//LOGLN("Initial intrinsics #" << indices[i]+1 << ":\n" << cameras[i].K());
//cout<<"初始内参 #" << indices[i]+1 << ":\n" << cameras[i].K()< adjuster;
// if (ba_cost_func == "reproj") adjuster = new detail::BundleAdjusterReproj();
// else if (ba_cost_func == "ray") adjuster = new detail::BundleAdjusterRay();
// else
// {
// cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.\n";
// return -1;
// }
// adjuster->setConfThresh(conf_thresh);
// Mat_ refine_mask = Mat::zeros(3, 3, CV_8U);
// if (ba_refine_mask[0] == 'x') refine_mask(0,0) = 1;
// if (ba_refine_mask[1] == 'x') refine_mask(0,1) = 1;
// if (ba_refine_mask[2] == 'x') refine_mask(0,2) = 1;
// if (ba_refine_mask[3] == 'x') refine_mask(1,1) = 1;
// if (ba_refine_mask[4] == 'x') refine_mask(1,2) = 1;
// adjuster->setRefinementMask(refine_mask);
// (*adjuster)(features, pairwise_matches, cameras);
// 求出的焦距取中值
vector focals;
for (size_t i = 0; i < cameras.size(); ++i)
{
//LOGLN("Camera #" << indices[i]+1 << ":\n" << cameras[i].K());
focals.push_back(cameras[i].focal);
}
sort(focals.begin(), focals.end());
float warped_image_scale;
if (focals.size() % 2 == 1)
warped_image_scale = static_cast(focals[focals.size() / 2]);
else
warped_image_scale = static_cast(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
if (do_wave_correct)
{
vector rmats;
for (size_t i = 0; i < cameras.size(); ++i)
rmats.push_back(cameras[i].R.clone());
waveCorrect(rmats, wave_correct);
for (size_t i = 0; i < cameras.size(); ++i)
cameras[i].R = rmats[i];
}
//LOGLN("Warping images (auxiliary)... ");
cout<<"正在扭曲图像(辅助)..."< corners(num_images);
vector masks_warped(num_images);
vector images_warped(num_images);
vector sizes(num_images);
vector masks(num_images);
// Preapre images masks
for (int i = 0; i < num_images; ++i)
{
masks[i].create(images[i].size(), CV_8U);
masks[i].setTo(Scalar::all(255));
}
// Warp images and their masks
Ptr warper_creator;
#if defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
{
if (warp_type == "plane") warper_creator = new cv::PlaneWarperGpu();
else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarperGpu();
else if (warp_type == "spherical") warper_creator = new cv::SphericalWarperGpu();
}
else
#endif
{
if (warp_type == "plane") warper_creator = new cv::PlaneWarper();
else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarper();
else if (warp_type == "spherical") warper_creator = new cv::SphericalWarper();
else if (warp_type == "fisheye") warper_creator = new cv::FisheyeWarper();
else if (warp_type == "stereographic") warper_creator = new cv::StereographicWarper();
else if (warp_type == "compressedPlaneA2B1") warper_creator = new cv::CompressedRectilinearWarper(2, 1);
else if (warp_type == "compressedPlaneA1.5B1") warper_creator = new cv::CompressedRectilinearWarper(1.5, 1);
else if (warp_type == "compressedPlanePortraitA2B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(2, 1);
else if (warp_type == "compressedPlanePortraitA1.5B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(1.5, 1);
else if (warp_type == "paniniA2B1") warper_creator = new cv::PaniniWarper(2, 1);
else if (warp_type == "paniniA1.5B1") warper_creator = new cv::PaniniWarper(1.5, 1);
else if (warp_type == "paniniPortraitA2B1") warper_creator = new cv::PaniniPortraitWarper(2, 1);
else if (warp_type == "paniniPortraitA1.5B1") warper_creator = new cv::PaniniPortraitWarper(1.5, 1);
else if (warp_type == "mercator") warper_creator = new cv::MercatorWarper();
else if (warp_type == "transverseMercator") warper_creator = new cv::TransverseMercatorWarper();
}
if (warper_creator.empty())
{
cout << "Can't create the following warper '" << warp_type << "'\n";
return 1;
}
Ptr warper = warper_creator->create(static_cast(warped_image_scale * seam_work_aspect));
for (int i = 0; i < num_images; ++i)
{
Mat_ K;
cameras[i].K().convertTo(K, CV_32F);
float swa = (float)seam_work_aspect;
K(0,0) *= swa; K(0,2) *= swa;
K(1,1) *= swa; K(1,2) *= swa;
corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
sizes[i] = images_warped[i].size();
warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
}
vector images_warped_f(num_images);
for (int i = 0; i < num_images; ++i)
images_warped[i].convertTo(images_warped_f[i], CV_32F);
//LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
cout<<"扭曲图像用时:"<< ((getTickCount() - t) / getTickFrequency()) << " 秒"< compensator = ExposureCompensator::createDefault(expos_comp_type);
//Mat转变为UMat----------------------------------------------------------开始
vector u_images_warped; //复制一个
for (unsigned int i = 0; i < images_warped.size(); ++i)
u_images_warped.push_back(images_warped[i].getUMat(cv::ACCESS_READ));
vector u_masks_warped; //复制一个
for (unsigned int i = 0; i < masks_warped.size(); ++i)
u_masks_warped.push_back(masks_warped[i].getUMat(cv::ACCESS_READ));
//Mat转变为UMat----------------------------------------------------------结束
compensator->feed(corners, u_images_warped, u_masks_warped);
//compensator->feed(corners, images_warped, masks_warped);
cout<<"正在寻找接缝..."< seam_finder;
if (seam_find_type == "no")
seam_finder = new detail::NoSeamFinder();
else if (seam_find_type == "voronoi")
seam_finder = new detail::VoronoiSeamFinder();
else if (seam_find_type == "gc_color")
{
#if defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR);
else
#endif
seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR);
}
else if (seam_find_type == "gc_colorgrad")
{
#if defined(HAVE_OPENCV_GPU)
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR_GRAD);
else
#endif
seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR_GRAD);
}
else if (seam_find_type == "dp_color")
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR);
else if (seam_find_type == "dp_colorgrad")
seam_finder = new detail::DpSeamFinder(DpSeamFinder::COLOR_GRAD);
if (seam_finder.empty())
{
cout << "Can't create the following seam finder '" << seam_find_type << "'\n";
return 1;
}
//Mat转变为UMat----------------------------------------------------------开始
vector u_images_warped_f; //images_warped_f 转化为 u_images_warped_f
for (unsigned int i = 0; i < images_warped_f.size(); ++i)
u_images_warped_f.push_back(images_warped_f[i].getUMat(cv::ACCESS_READ));
//Mat转变为UMat----------------------------------------------------------结束
//seam_finder->find(images_warped_f, corners, masks_warped);
seam_finder->find(u_images_warped_f, corners, u_masks_warped); //
// 释放不再使用的内存
images.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
//LOGLN("Compositing...");
cout<<"正在合成图像..." < blender;
//double compose_seam_aspect = 1;
double compose_work_aspect = 1;
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
//LOGLN("Compositing image #" << indices[img_idx]+1);
cout<<"合成图像 #" << indices[img_idx]+1< 0)
compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
is_compose_scale_set = true;
// 计算相对比例
//compose_seam_aspect = compose_scale / seam_scale;
compose_work_aspect = compose_scale / work_scale;
// 更新扭曲图像比例
warped_image_scale *= static_cast(compose_work_aspect);
warper = warper_creator->create(warped_image_scale);
// 更新角和尺寸
for (int i = 0; i < num_images; ++i)
{
// 更新本质
cameras[i].focal *= compose_work_aspect;
cameras[i].ppx *= compose_work_aspect;
cameras[i].ppy *= compose_work_aspect;
// Update corner and size
Size sz = full_img_sizes[i];
if (std::abs(compose_scale - 1) > 1e-1)
{
sz.width = cvRound(full_img_sizes[i].width * compose_scale);
sz.height = cvRound(full_img_sizes[i].height * compose_scale);
}
Mat K;
cameras[i].K().convertTo(K, CV_32F);
Rect roi = warper->warpRoi(sz, K, cameras[i].R);
corners[i] = roi.tl();
sizes[i] = roi.size();
}
}
if (abs(compose_scale - 1) > 1e-1)
resize(full_img, img, Size(), compose_scale, compose_scale);
else
img = full_img;
full_img.release();
Size img_size = img.size();
Mat K;
cameras[img_idx].K().convertTo(K, CV_32F);
// 扭曲当前图像
warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
// 扭曲当前图像掩码
mask.create(img_size, CV_8U);
mask.setTo(Scalar::all(255));
warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
// 曝光补偿
compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
img_warped.convertTo(img_warped_s, CV_16S);
img_warped.release();
img.release();
mask.release();
dilate(masks_warped[img_idx], dilated_mask, Mat());
resize(dilated_mask, seam_mask, mask_warped.size());
mask_warped = seam_mask & mask_warped;
if (blender.empty())
{
blender = Blender::createDefault(blend_type, try_gpu);
Size dst_sz = resultRoi(corners, sizes).size();
float blend_width = sqrt(static_cast(dst_sz.area())) * blend_strength / 100.f;
if (blend_width < 1.f)
blender = Blender::createDefault(Blender::NO, try_gpu);
else if (blend_type == Blender::MULTI_BAND)
{
MultiBandBlender* mb = dynamic_cast(static_cast(blender));
mb->setNumBands(static_cast(ceil(log(blend_width)/log(2.)) - 1.));
//LOGLN("Multi-band blender, number of bands: " << mb->numBands());
cout<<" 多频段图像融合, 分段数: " << mb->numBands()<(static_cast(blender));
fb->setSharpness(1.f/blend_width);
//LOGLN("Feather blender, sharpness: " << fb->sharpness());
cout<<"羽化融合,清晰度:" << fb->sharpness() <prepare(corners, sizes);
}
// 混合当前图像
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
}
Mat result, result_mask;
blender->blend(result, result_mask);
//LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
cout<<"图像混合用时:"<< ((getTickCount() - t) / getTickFrequency()) << " 秒"<
串联匹配以博文《Opencv2.4.9源码分析——Stitching(二)》为模板作为一个单独cpp,
比便简单,直接看吧:
//串联匹配
#define ENABLE_LOG 1
#include
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/util.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/warpers.hpp"
#include
#include
#include
#include
using namespace cv;
using namespace std;
using namespace detail;
void f2_matcher(vector &features,vector &f2_matches)
{
//vector f2_matches; //特征匹配
BestOf2NearestMatcher matcher(false, 0.3f, 6, 6); //定义特征匹配器,2NN方法
matcher(features, f2_matches); //进行特征匹配
}
void i_matcher(vector &features, vector &pairwise_matches)
{
int num_images=features.size ();
//1。串联匹配
vector> f2_2;//f2_2[i] 表示 i 和 i+1 的匹配关系(0 开头,比图像数小 1)
for (int i = 1; i < num_images; ++i)
{
vector f2;
vector m2;
f2.push_back (features[i-1]);
f2.push_back (features[i]);
f2_matcher(f2,m2);
f2_2.push_back(m2);
}
//2。把串联匹配 ----按opencv stitching 拼接的匹配关系组在一起
MatchesInfo f;//大小: n x n (n个图)
for (int i = 0; i < num_images; ++i)
{
for (int j = 0; j < num_images; ++j)
{
//cout<<"i,j:"<
用时 408.58 秒,6分多,7分钟不到