线性代数 第四章 线性方程组

一、矩阵形式

Ax=b,Ax=0

经过初等行变换化为阶梯形矩阵。当r(A)=r(\bar{A}),有解;当r(A)< n,有非零解。

Ax=b有解,等价于

  • \beta可由\alpha _1,\alpha _2,...,\alpha _n线性表示
  • r(\alpha _1,\alpha _2,...,\alpha _n)=r(\alpha _1,\alpha _2,...,\alpha _n,\beta )

克拉默法则:非齐次线性方程组中,系数行列式\left | A \right |\neq 0,则方程组有唯一解,且唯一解为x_i=\frac{\left | A_i \right |}{\left | A \right |},i=1,2,...,n.

其中\left | A_i \right |\left | A \right |中第i列元素(即x_i的系数)替换成方程组右端的常数项b_1,b_2,...b_n所构成的行列式。

二、向量形式

x_1\alpha _1+x_2\alpha _2+...+x_n\alpha _n=\beta方程组有解等价于\beta可由\alpha _1,\alpha _2,...,\alpha _n表出;

x_1\alpha _1+x_2\alpha _2+...+x_n\alpha _n=0方程组有非零解等价于\alpha _1,\alpha _2,...,\alpha _n线性相关。

三、齐次线性方程组

若A是m\times n矩阵,r(A)=r<n,则齐次线性方程组Ax=0存在基础解系,且基础解系有n-r个线性无关解向量组成。也就是说,基础解系向量个数+r(A)=n(未知量个数)。

四、非齐次线性方程组

Ax=b有解条件

(1)A_{m\times n}x=b无解,等价于

  • b不能由A的列向量组\alpha _1,\alpha _2,...,\alpha _n线性表出
  • r(A)\neq r(A\mid b),(r(A)+1= r(A\mid b))

(2)A_{m\times n}x=b有解,等价于

  • b可由A的列向量组\alpha _1,\alpha _2,...,\alpha _n线性表出
  • r(A)=r(A\mid b),即r(\alpha _1,\alpha _2,...,\alpha _n)=r(\alpha _1,\alpha _2,...,\alpha _n,b)
  • (\alpha _1,\alpha _2,...,\alpha _n)\cong (\alpha _1,\alpha _2,...,\alpha _n,b)

r(\alpha _1,\alpha _2,...,\alpha _n)=r(\alpha _1,\alpha _2,...,\alpha _n,b)=n\Leftrightarrow\alpha _1,\alpha _2,...,\alpha _n线性无关,\alpha _1,\alpha _2,...,\alpha _n,b线性相关\Leftrightarrowb可由\alpha _1,\alpha _2,...,\alpha _n线性表出,且表出法唯一\Leftrightarrow Ax=b有唯一解。

r(\alpha _1,\alpha _2,...,\alpha _n)=r(\alpha _1,\alpha _2,...,\alpha _n,b)<n\Leftrightarrow\alpha _1,\alpha _2,...,\alpha _n线性无关,\alpha _1,\alpha _2,...,\alpha _n,b线性相关\Leftrightarrowb可由\alpha _1,\alpha _2,...,\alpha _n线性表出,且表出法不唯一\Leftrightarrow Ax=b有无穷多解。

五、解的性质

\alpha _1,\alpha _2Ax=b的解,则\alpha _1-\alpha _2Ax=0的解;

\eta _1,\eta _2Ax=0的解,则k_1\eta _1+k_2\eta _2Ax=0的解;

\alphaAx=b的解,\etaAx=0的解,则\alpha +\etaAx=b的解。

六、解的结构

特解,通解,自由变量。

如果有方程组就加减消元、讨论参数,求解;

如果没有方程组就大概需求秩,用解的结构来分析推理来求解。

你可能感兴趣的:(考研线性代数,线性代数,矩阵)