哈尔兹法则策略量化三(继续优化买点,加入均线系统)

在哈尔兹法则策略量化二中,我们对买点进行了优化,即买点条件加入5日均线大于10均线,近三年收益如下:


今天我们继续对买点进行优化,我们尝试买点加入均线系统,即在哈尔兹法则的买入条件,股从低价上涨10%的基础上加入5日均线>10均线>20日均线,近三年收益如下图所示:


图二:哈尔兹法则买入条件加5日均线>10日均线>20日均线

我们看到对比哈尔兹法则策略量化二,收益及收益率有较大的提高,但是我对此还是不满意,继续进行优化,我将本来设定的60天最低价格改为90天最低价,作为哈尔兹法则的低价,其余条件不变,进行测试,近三年收益图下图:


图三:买入条件加5日均线>10日均线>20日均线,90天最低价作为哈尔兹法则的低价

我们看到将本来设定的60天最低价格改为90天最低价,作为哈尔兹法则的低价,收益以及正收益概率,反而降低了,如果改成30天呢?收益会怎样?该代码,测试结果如下:


图四:买入条件加5日均线>10日均线>20日均线,30天最低价作为哈尔兹法则的低价

从图四,我们看到将本来设定的60天最低价格改为30天最低价,作为哈尔兹法则的低价,收益以及正收益概率也是降低的。

买点加入均线系统,即在哈尔兹法则的买入条件,股从低价上涨10%的基础上加入5日均线>10均线>20日均线,代码如下:

# -*- coding: utf-8 -*-

import numpyas np

import pandasas pd

import matplotlib.pyplotas plt

import os

import shutil

import time

import matplotlib

def Haerzi(start,end):

mairuhou_mark =0

    zhengshouyi_num =0

    fushouyi_num =0

    cur_dir = os.getcwd()# get current path

    folder_name ='result'

    dir_new = os.path.join(cur_dir, folder_name)

end_date = ['2019/12/31','2019/12/30','2019/12/29','2019/12/28']

#删掉结果

    if os.path.exists(dir_new +"\\" + start.replace("/","_") +"__" + end.replace("/","_") +"celie_xiangxi" +'.txt'):

os.remove(dir_new +"\\" + start.replace("/","_") +"__" + end.replace("/","_") +"celie_xiangxi" +'.txt')

if os.path.exists(dir_new +"\\" + start.replace("/","_") +"__" + end.replace("/","_") +"dangtian_buy" +'.txt'):

os.remove(dir_new +"\\" + start.replace("/","_") +"__" + end.replace("/","_") +"dangtian_buy" +'.txt')

if os.path.exists(dir_new +"\\" + start.replace("/","_") +"__" + end.replace("/","_") +'"dangtian_sell"' +'.txt'):

os.remove(dir_new +"\\" + start.replace("/","_") +"__" + end.replace("/","_") +'"dangtian_sell"' +'.txt')

#设置路径

    dir_list = []

lujing =r'C:\gupiao\gupiaoci'

    for iin os.listdir(r'C:\gupiao\gupiaoci'):

a = i.split('.')[0]

if a[0] !='3':

dir_list.append(lujing+'\\'+i)

#创业板指数

    df = pd.read_table(r'C:\gupiao\gupiaoci' +"\\399006.txt",header=1,usecols=range(6), parse_dates=[0], index_col=0,encoding='gb2312')

df.index.rename('date', inplace=True)

df.rename(columns={'    开盘':'open', '    最高':'high', '    最低':'low', '    收盘':'close','    成交量':'vol'}, inplace=True)

df = df.drop('数据来源:通达信')

df.close = df.close.astype(np.float32)#设置为32位,4字节,默认64位,8字节,append到list之后就会多小数位

    df.low = df.low.astype(np.float32)#设置为32位,4字节,默认64位,8字节,append到list之后就会多小数位

    df.vol = df.vol.astype(np.int64)

df2 = df[start:end][:len(df.vol)-1]

#均线

    ma5_chuangzhi = df2.close.rolling(window=5,center=False).mean()

ma5_chuangzhi = ma5_chuangzhi [start:end]

ma10_chuangzhi = df2.close.rolling(window=10,center=False).mean()

ma10_chuangzhi = ma10_chuangzhi [start:end]

ma30_chuangzhi = df2.close.rolling(window=30,center=False).mean()

ma30_chuangzhi = ma30_chuangzhi [start:end]

#深圳指数

    df = pd.read_table(r'C:\gupiao\gupiaoci' +"\\399107.txt",header=1,usecols=range(6), parse_dates=[0], index_col=0,encoding='gb2312')

df.index.rename('date', inplace=True)

df.rename(columns={'    开盘':'open', '    最高':'high', '    最低':'low', '    收盘':'close','    成交量':'vol'}, inplace=True)

df = df.drop('数据来源:通达信')

df.close = df.close.astype(np.float32)#设置为32位,4字节,默认64位,8字节,append到list之后就会多小数位

    df.low = df.low.astype(np.float32)#设置为32位,4字节,默认64位,8字节,append到list之后就会多小数位

    df.vol = df.vol.astype(np.int64)

df2 = df[start:end][:len(df.vol)-1]

#均线

    ma5_shenzhen = df2.close.rolling(window=5,center=False).mean()

ma5_shenzhen = ma5_shenzhen[start:end]

ma10_shenzhen = df2.close.rolling(window=10,center=False).mean()

ma10_shenzhen = ma10_shenzhen[start:end]

ma30_shenzhen = df2.close.rolling(window=30,center=False).mean()

ma30_shenzhen = ma30_shenzhen[start:end]

#个股

    total_shouyi=1

    total_date_buy = []

total_date_sell = []

buy_date_zhengshouyi = []

buy_date_fushouyi = []

for jin dir_list:

#获取数据

        name = (j.split('\\')[-1]).split('.')[0]

df = pd.read_table(j,header=1,usecols=range(6), parse_dates=[0], index_col=0,encoding='gb2312')

df.index.rename('date', inplace=True)

df.rename(columns={'    开盘':'open', '    最高':'high', '    最低':'low', '    收盘':'close','    成交量':'vol'}, inplace=True)

df = df.drop('数据来源:通达信')

df.close = df.close.astype(np.float32)#设置为32位,4字节,默认64位,8字节,append到list之后就会多小数位

        df.low = df.low.astype(np.float32)#设置为32位,4字节,默认64位,8字节,append到list之后就会多小数位

        df.vol = df.vol.astype(np.int64)

df2 = df[start:end][:len(df.vol)-1]

df = df[start:end]

#均线

        ma5 = df2.close.rolling(window=5,center=False).mean()

ma5= ma5[start:end]

ma3 = df2.close.rolling(window=3,center=False).mean()

ma3= ma3[start:end]

ma8 = df2.close.rolling(window=8, center=False).mean()

ma8 = ma8[start:end]

ma15 = df2.close.rolling(window=15, center=False).mean()

ma15 = ma15[start:end]

ma10 = df2.close.rolling(window=10,center=False).mean()

ma10= ma10[start:end]

ma12 = df2.close.rolling(window=12, center=False).mean()

ma12 = ma12[start:end]

ma20 = df2.close.rolling(window=20,center=False).mean()

ma20= ma20[start:end]

ma30 = df2.close.rolling(window=30,center=False).mean()

ma30 = ma30[start:end]

ma60 = df2.close.rolling(window=60,center=False).mean()

ma60 = ma60[start:end]

ma120 = df2.close.rolling(window=120,center=False).mean()

ma120 = ma120[start:end]

ma200 = df2.close.rolling(window=200, center=False).mean()

ma200 = ma200[start:end]

ma250 = df2.close.rolling(window=250,center=False).mean()

ma250 = ma250[start:end]

#均量线

        vol5 = df2.vol.rolling(window=5,center=False).mean()

vol5 = vol5[start:end]

vol3 = df2.vol.rolling(window=3,center=False).mean()

vol3 = vol3[start:end]

vol8 = df2.vol.rolling(window=8,center=False).mean()

vol8 = vol8[start:end]

vol10 = df2.vol.rolling(window=10,center=False).mean()

vol10 = vol10[start:end]

vol20 = df2.vol.rolling(window=20,center=False).mean()

vol20 = vol20[start:end]

vol15 = df2.vol.rolling(window=15,center=False).mean()

vol15 = vol15[start:end]

vol30 = df2.vol.rolling(window=30,center=False).mean()

vol30 = vol30[start:end]

vol60 = df2.vol.rolling(window=60, center=False).mean()

vol60 = vol60[start:end]

#设置初始化数据

#买入条件,buy_status = True,其次是chicang_status = False

        chicang_status =False#chicang_status==False的时候表示空仓状态,可以买入,买入之后需要将其设置为True,表示股票为持有状态

        buy_status =False#初始化buy的状态为False,当遇到买点出现时,设置状态为True,表示之后可以买入

        buy_price = []

buy_date = []

sell_price = []

sell_date = []

low_vol = []

low_vol_index = []

fengexian_mark =0

        #low_vol

        df_temp = df

temp_vol = df.vol

temp_index = df.index

ma3_temp = ma3

ma5_temp = ma5

ma8_temp = ma8

ma15_temp = ma15

ma10_temp = ma10

ma12_temp = ma12

ma20_temp = ma20

ma30_temp = ma30

ma60_temp = ma60

ma120_temp = ma120

ma200_temp = ma200

ma250_temp = ma250

vol5_temp = vol5

vol3_temp = vol3

vol8_temp = vol8

vol15_temp = vol15

vol10_temp = vol10

vol20_temp = vol20

vol30_temp = vol30

vol60_temp = vol60

temp_vol_max =0

        for jin range(60,len(temp_vol)):

close_min = df_temp.close[j-60:j-1].min()#60天内最低价

            if buy_status ==False and  chicang_status ==False and df_temp.close[j] < close_min:

buy_status =True#买点出现时,设置状态为True,表示之后可以买入

                vol_max_dangtian_index = temp_index[j]

close_min_new = df_temp.close[j]

elif buy_status ==True and chicang_status ==False:

if df_temp.at[temp_index[j-1],'close'] >=300 or (df_temp.high[j]-df_temp.close[j-1])/df_temp.close[j-1] < -0.09:

chicang_status =False

                    buy_status =False

break

                elif (df_temp.close[j]-close_min_new)/close_min_new >0.1 and ma5_temp[j] > ma10_temp[j] > ma20_temp[j]:#买点优化,即在哈尔兹法则的买入条件,股从低价上涨10%的基础上加入5日均线大于10均线​

                    if len(gupiaochichang) >=1:

for gupiaochichang_itemin gupiaochichang:

if gupiaochichang_item[0] == temp_index[j]and gupiaochichang_item[1] >=1:

#print(gupiaochichang_item)

                                chicang_status =False

                                buy_status =False

                        if chicang_status ==False and buy_status ==False:

continue

                    chicang_status =True

                    buy_status =False#买入之后设置状态为False

                    buy_price_m = df_temp.at[temp_index[j],'close']

buy_date_temp = temp_index[j]

buy_price.append(df_temp.at[temp_index[j],'close'])

buy_date.append(temp_index[j])

total_date_buy.append([name,temp_index[j]])

fengexian_mark =1

                    close_max = df_temp.close[j]#加入买入当天就是当前最高价

#股票持仓,买日期加1,买日期不在list,则加入

                    for gupiaochichuang_itemin gupiaochichang:

if gupiaochichuang_item[0] == temp_index[j]:

gupiaochichuang_item[1] +=1

                    if len(gupiaochichang) ==0:

gupiaochichang.append([temp_index[j],1])

else:

for i22in range(len(gupiaochichang)):

if len(gupiaochichang) !=0 and i22 ==len(gupiaochichang) -1 and gupiaochichang[i22][0] != temp_index[j]:#找到最后一个还没有找到买日期,加将买日期加入

                                gupiaochichang.append([temp_index[j],1])

#存结果

                    with open(dir_new +"\\" + start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write("股票名称--" + name +'\n' +"开始日期--" + start +'\n' +"结束日期--" + end +'\n' )

f.write("最大vol/当天vol 大于20当天日期----->" +str(vol_max_dangtian_index) +'\n')

f.write('\n' +"股票名称--" + name +"--买入价格--" +"--步长--"  +"--" +"--j--" +str(j) +"--" +str(df_temp.at[temp_index[j],'close']) +"--买入日期--" +str(temp_index[j]))

elif chicang_status ==True:

if close_max < df_temp.close[j]:

close_max = df_temp.close[j]#动态计算最高点价格

                if (close_max -  df_temp.close[j])/ df_temp.close[j] >=0.1:#最高点下跌10%,卖出

                    chicang_status =False

                    sell_price.append(df_temp.close[j])

sell_date.append(temp_index[j])

total_date_sell.append([name,temp_index[j]])

if (df_temp.close[j]-buy_price_m)/buy_price_m >0:

zhengshouyi_num +=1#正收益次数加1

                        buy_date_zhengshouyi.append(buy_date_temp)

else:

fushouyi_num +=1#负收益次数加1

                        buy_date_fushouyi.append(buy_date_temp)

total_shouyi *= (1 + (df_temp.close[j]-buy_price_m)/buy_price_m)

mairuhou_mark =0

                    #存结果

                    with open(dir_new +"\\" + start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write('\n' +"股票名称--" + name +"--最高点下跌10%,卖出价格--" +"--步长--" +"--" +"--j--" +str(j) +"--" +str(df_temp.close[j]) +"--卖出日期--" +str(temp_index[j]))

elif (df_temp.close[j] - buy_price_m)/buy_price_m < -0.05:

chicang_status =False

                    sell_price.append(df_temp.close[j])

sell_date.append(temp_index[j])

total_date_sell.append([name,temp_index[j]])

fushouyi_num +=1#负收益次数加1

                    total_shouyi *= (1 -0.05)

mairuhou_mark =0

                    # buy_date_fushouyi.append([name,buy_date_temp])

                    buy_date_fushouyi.append(buy_date_temp)

#存结果

                    with open(dir_new +"\\" + start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write('\n' +"股票名称--" + name +"--止损-0.05,卖出价格--" +"--步长--" +"--" +"--j--" +str(j) +"--" +str(df_temp.close[j]) +"--卖出日期--" +str(temp_index[j]))

elif mairuhou_mark >=10:

total_shouyi *= (1 + (df_temp.close[j] - buy_price_m)/buy_price_m)

chicang_status =False

                    sell_price.append(df_temp.close[j])

sell_date.append(temp_index[j])

total_date_sell.append([name,temp_index[j]])

mairuhou_mark =0

                    if (df_temp.close[j] - buy_price_m)/(buy_price_m) >0:

zhengshouyi_num +=1

                        buy_date_zhengshouyi.append(buy_date_temp)

#print("持有超过10天卖出:",(df_temp.close[j] - buy_price_m)/(buy_price_m))

#存结果

                        with open(dir_new +"\\" + start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write('\n' +"股票名称--" + name +"--持有超过5天卖出,大于0.01,卖出价格--" +"--" +"--j--" +str(j) +"--" +str(df_temp.close[j]) +"--卖出日期--" +str(temp_index[j]))

else:

fushouyi_num +=1

                        buy_date_fushouyi.append(buy_date_temp)

#print("持有超过10天卖出:",(df_temp.close[j] - buy_price_m) / (buy_price_m ))

#存结果

                        with open(dir_new +"\\" +  start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write('\n' +"股票名称--" + name +"--持有超过15天卖出,小于0.01,大于0,卖出价格--"  +"--j--" +str(j) +"--" +str(df_temp.close[j]) +"--卖出日期--" +str(temp_index[j]))

else:

mairuhou_mark +=1

        gupiaochichang.sort(key=lambda x:x[0])

#if zhengshouyi_num+fushouyi_num != 0:

#print(start,"----",end,"total_shouyi=",'%.2f'%(total_shouyi),"概率",'%.2f'%(zhengshouyi_num/(zhengshouyi_num+fushouyi_num)),"正收益次数->",zhengshouyi_num,"负收益次数->",fushouyi_num)

#存结果

        cur_dir = os.getcwd()# get current path

        folder_name ='result'

        dir_new = os.path.join(cur_dir, folder_name)

#存买入,卖出价格,日期

        if len(buy_price) >len(sell_price):

if buy_date[-1]in end_date:

with open(dir_new +"\\" +  start.replace("/","_") +"__" +end.replace("/","_") +"dangtian_buy" +'.txt','a')as f:

f.writelines('\n' + name +"--" +str(buy_date[-1]) +'\n' +'buy: ' +str(buy_price[-1])  +'\n')

if len(sell_price) !=0:

if sell_date[-1]in end_date:

with open(dir_new +"\\" +  start.replace("/","_") +"__" +end.replace("/","_") +"dangtian_sell" +'.txt','a')as f:

for rrin range(len(sell_price)):

if rr ==0:

f.writelines('\n' + name +'\n' +'buy: ' +str(buy_price[rr]) +str(buy_date[rr]) +'\n' +'sell: ' +str(sell_price[rr]) +str(sell_date[rr]) +'\n')

else:

f.writelines('buy: ' +str(buy_price[rr]) +str(buy_date[rr]) +'\n' +'sell: ' +str(sell_price[rr]) +str(sell_date[rr]) +'\n')

if zhengshouyi_num+fushouyi_num !=0:

zshouyi =float(zhengshouyi_num/(zhengshouyi_num+fushouyi_num))

fshouyi =float(fushouyi_num/(zhengshouyi_num+fushouyi_num))

total_num = zhengshouyi_num+fushouyi_num

total_date_buy.sort(key=lambda x:x[1])

total_date_sell.sort(key=lambda x:x[1])

x = []

y = []

for iin buy_date_zhengshouyi:

if inot in x:

x.append(i)

for iin buy_date_fushouyi:

if inot in y:

y.append(i)

if fengexian_mark ==1:

with open(dir_new +"\\" +  start.replace("/","_") +"__" + end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write('\n' +'\n' +"--------------------分割线----------------------" +'\n' +'\n')

buy_date_zhengshouyi_count = []

buy_date_fushouyi_count = []

i =0

    x.sort()

y.sort()

for iin x:

if buy_date_zhengshouyi.count(i) >=0:

with open(dir_new +"\\" +  start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write('\n' +"正收益买日期--" +str(buy_date_zhengshouyi.count(i)) +"--" +str(i))

buy_date_zhengshouyi_count.append(buy_date_zhengshouyi.count(i))

with open(dir_new +"\\" + start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write('\n' )

for iin y:

if buy_date_fushouyi.count(i) >=0:

with open(dir_new +"\\" + start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write('\n' +"负收益买日期--" +str(buy_date_fushouyi.count(i)) +"--" +str(i))

buy_date_fushouyi_count.append(buy_date_fushouyi.count(i))

if zhengshouyi_num+fushouyi_num !=0:

print(start,"----",end,"total_shouyi=",'%.2f'%(total_shouyi),"概率",'%.2f'%(zhengshouyi_num/(zhengshouyi_num+fushouyi_num)),"正收益次数->",zhengshouyi_num,"负收益次数->",fushouyi_num)

with open(dir_new +"\\" +  start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt','a')as f:

f.write('\n' +'\n' +"正收益买日期count--" +str(len(buy_date_zhengshouyi_count)) +"--" +str(buy_date_zhengshouyi_count))

f.write('\n' +"负收益买日期count--" +str(len(buy_date_fushouyi_count)) +"--" +str(buy_date_fushouyi_count))

f.write('\n' +"买卖总次数" +str(zhengshouyi_num+fushouyi_num) +"--正收益买概率--" +str('%.2f'%(zhengshouyi_num/(zhengshouyi_num + fushouyi_num))) +"--正收益次数--" +str(zhengshouyi_num))

for iin range(len(gupiaochichang)):

if i ==0:

f.write('\n' +"买日期count:" +'\n' +str(gupiaochichang[i]))

else:

f.write('\n' +str(gupiaochichang[i]))

shutil.copy(dir_new +"\\" +  start.replace("/","_") +"__" +end.replace("/","_") +"celie_xiangxi" +'.txt',dir_new +"\\" +  start.replace("/","_") +"__" +end.replace("/","_")  +'_' +"--正收益买概率--" +str('%.2f'%(zhengshouyi_num / (zhengshouyi_num + fushouyi_num)))  +"--倍数--" +str('%.2f'%(total_shouyi))+"--正收益次数--" +str(zhengshouyi_num) +"--负收益次数--" +str(fushouyi_num)+'.txt')

return [total_shouyi,zhengshouyi_num / (zhengshouyi_num + fushouyi_num)]

if __name__ =='__main__':

print('start',time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))

cur_dir = os.getcwd()# get current path

    folder_name ='result'

    dir_new = os.path.join(cur_dir, folder_name)

start = ['2016/09/01','2017/09/01','2018/09/01']

end = ['2017/12/31','2018/12/31','2019/12/31']

gupiaochichang = []

total_shouyi_gailv = []

shouyi_huizong = []

gailv_huizong = []

for iin range(len(start)):

total_shouyi_gailv.append(Haerzi(start[i],end[i]))

for iin range(len(total_shouyi_gailv)):

shouyi_huizong.append(total_shouyi_gailv[i][0])

gailv_huizong.append(total_shouyi_gailv[i][1])

#绘图

    matplotlib.rcParams['font.family'] ='SimHei'  # SimHei黑体

    matplotlib.rcParams['font.size'] =10

    dir_new = os.path.join(cur_dir, folder_name)

file_name = dir_new +r'/' +'shouyi'

    #收益图

    plt.subplots_adjust(hspace=0.5)

fig1 = plt.subplot(211)

fig1.set_title("收益")

# 设置坐标轴范围

    fig1.set_xlim(-1, 3)

fig1.set_ylim(0, 50)

# 设置坐标轴名称

    fig1.set_xlabel('日期')

fig1.set_ylabel('收益')

# 设置坐标轴刻度

    fig1.set_xticks = np.arange(-1, 4, 1)

for a, bin zip(end, shouyi_huizong):

fig1.text(a, b +0.1, '%.2f' % b, ha='center', va='bottom', color='red', fontsize=20)

fig1.plot(end, shouyi_huizong, color='blue', marker='o')

# 正收益概率图

    fig2 = plt.subplot(212)

fig2.set_title("收益概率")

# 设置坐标轴范围

    fig2.set_xlim(-1, 3)

fig2.set_ylim(0, 1.2)

# 设置坐标轴名称

    fig2.set_xlabel('日期')

fig2.set_ylabel('收益概率')

# 设置坐标轴刻度

    fig2.set_xticks = np.arange(-1, 4, 1)

for a, bin zip(end, gailv_huizong):

fig2.text(a, b +0.1, '%.2f' % b, ha='center', va='bottom', color='blue', fontsize=20)

fig2.plot(end, gailv_huizong, color='blue', marker='o')

plt.savefig(file_name, dpi=300)

print('end',time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))

你可能感兴趣的:(哈尔兹法则策略量化三(继续优化买点,加入均线系统))