python中使用websocket调用、获取、保存大模型API

笔者最近在测试星火大模型的时候,他们是使用websocket 来建立对话,而且星火大模型开放的测试代码,质量上不咋地(20231030记录),还需要对websocket有一定的了解,才适合自己微调。

安装:

pip install websocket
pip install websocket-client

文章目录

  • 1 常见的websocket获取数据的方法
    • 1.1 第一种使用create_connection链接
    • 1.2 第二种:WebSocketApp + run_forever的方式
  • 2 针对`run_forever`内容保存
    • 2.1 通过定义global变量来保存内容
    • 2.2 通过`CallbackToIterator()`来返回


1 常见的websocket获取数据的方法

参考【python: websocket获取实时数据的几种常见链接方式】常见的两种。

1.1 第一种使用create_connection链接

需要pip install websocket-client (此方法不建议使用,链接不稳定,容易断,并且连接很耗时)

import time
from websocket import create_connection

url = 'wss://i.cg.net/wi/ws'
while True:  # 一直链接,直到连接上就退出循环
    time.sleep(2)
    try:
        ws = create_connection(url)
        print(ws)
        break
    except Exception as e:
        print('连接异常:', e)
        continue
while True:  # 连接上,退出第一个循环之后,此循环用于一直获取数据
    ws.send('{"event":"subscribe", "channel":"btc_usdt.ticker"}')
    response = ws.recv()
    print(response)

1.2 第二种:WebSocketApp + run_forever的方式

import websocket


def on_message(ws, message):  # 服务器有数据更新时,主动推送过来的数据
    print(message)


def on_error(ws, error):  # 程序报错时,就会触发on_error事件
    print(error)


def on_close(ws):
    print("Connection closed ……")


def on_open(ws):  # 连接到服务器之后就会触发on_open事件,这里用于send数据
    req = '{"event":"subscribe", "channel":"btc_usdt.deep"}'
    print(req)
    ws.send(req)


if __name__ == "__main__":
    websocket.enableTrace(True)
    ws = websocket.WebSocketApp("wss://i.cg.net/wi/ws",
                                on_message=on_message,
                                on_error=on_error,
                                on_close=on_close)
    ws.on_open = on_open
    ws.run_forever(ping_timeout=30)

第二种方式里面,run_forever其实是流式返回内容,大概可以看,流式输出的样例:


{"code":0,"sid":"5ebc0d6833b54909b4a51fbe75a5051a","status":0}
### error: 'content'

{"code":0,"fileRefer":"{\"43816997a7a44a299d0bfb7c360c5838\":[2,0,1]}","sid":"5ebc0d6833b54909b4a51fbe75a5051a","status":99}
### error: 'content'

{"code":0,"content":"橘","sid":"5ebc0d6833b54909b4a51fbe75a5051a","status":1}

橘{"code":0,"content":"子。","sid":"5ebc0d6833b54909b4a51fbe75a5051a","status":1}

子。{"code":0,"content":"","sid":"5ebc0d6833b54909b4a51fbe75a5051a","status":2}
### closed ###

那么run_forever流式输出,正常的内容如何保存呢,进入下一章


2 针对run_forever内容保存

2.1 通过定义global变量来保存内容

参考【将Websocket数据保存到Pandas】
来看一下,文中的案例:

import json

import pandas as pd
import websocket

df = pd.DataFrame(columns=['foreignNotional', 'grossValue', 'homeNotional', 'price', 'side',
                           'size', 'symbol', 'tickDirection', 'timestamp', 'trdMatchID'])


def on_message(ws, message):
    msg = json.loads(message)
    print(msg)
    global df
    # `ignore_index=True` has to be provided, otherwise you'll get
    # "Can only append a Series if ignore_index=True or if the Series has a name" errors
    df = df.append(msg, ignore_index=True)


def on_error(ws, error):
    print(error)


def on_close(ws):
    print("### closed ###")


def on_open(ws):
    return


if __name__ == "__main__":
    ws = websocket.WebSocketApp("wss://www.bitmex.com/realtime?subscribe=trade:XBTUSD",
                                on_open=on_open, on_message=on_message, on_error=on_error, on_close=on_close)
    ws.run_forever()

其中global df是在定义全局变量df,可以在函数中把流式数据拿出来,还是很不错的

2.2 通过CallbackToIterator()来返回

在开源项目中ChuanhuChatGPT,看到了使用的方式spark.py,个人还没有尝试,只是贴在这里。

贴一下这个函数:

class CallbackToIterator:
    def __init__(self):
        self.queue = deque()
        self.cond = Condition()
        self.finished = False

    def callback(self, result):
        with self.cond:
            self.queue.append(result)
            self.cond.notify()  # Wake up the generator.

    def __iter__(self):
        return self

    def __next__(self):
        with self.cond:
            # Wait for a value to be added to the queue.
            while not self.queue and not self.finished:
                self.cond.wait()
            if not self.queue:
                raise StopIteration()
            return self.queue.popleft()

    def finish(self):
        with self.cond:
            self.finished = True
            self.cond.notify()  # Wake up the generator if it's waiting.


# 主函数截取
def get_answer_stream_iter(self):
    wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, self.spark_url)
    websocket.enableTrace(False)
    wsUrl = wsParam.create_url()
    ws = websocket.WebSocketApp(
        wsUrl,
        on_message=self.on_message,
        on_error=self.on_error,
        on_close=self.on_close,
        on_open=self.on_open,
    )
    ws.appid = self.appid
    ws.domain = self.domain

    # Initialize the CallbackToIterator
    ws.iterator = CallbackToIterator()

    # Start the WebSocket connection in a separate thread
    thread.start_new_thread(
        ws.run_forever, (), {"sslopt": {"cert_reqs": ssl.CERT_NONE}}
    )

    # Iterate over the CallbackToIterator instance
    answer = ""
    total_tokens = 0
    for message in ws.iterator:
        data = json.loads(message)
        code = data["header"]["code"]
        if code != 0:
            ws.close()
            raise Exception(f"请求错误: {code}, {data}")
        else:
            choices = data["payload"]["choices"]
            status = choices["status"]
            content = choices["text"][0]["content"]
            if "usage" in data["payload"]:
                total_tokens = data["payload"]["usage"]["text"]["total_tokens"]
            answer += content
            if status == 2:
                ws.iterator.finish()  # Finish the iterator when the status is 2
                ws.close()
            yield answer, total_tokens

截取了部分代码,这里先是定义ws.iterator = CallbackToIterator()然后通过迭代从for message in ws.iterator:拿出数据,看上去也是可行的

你可能感兴趣的:(LLM大模型,python,websocket,开发语言,星火大模型)