剑指JUC原理-6.wait notify

  • 作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家
  • 系列专栏:Spring源码、JUC源码
  • 如果感觉博主的文章还不错的话,请三连支持一下博主哦
  • 博主正在努力完成2023计划中:源码溯源,一探究竟
  • 联系方式:nhs19990716,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬

文章目录

    • wait nofity
      • 小故事 - 为什么需要 wait
      • 原理之 wait / notify
      • API 介绍
    • wait notify 的正确姿势
      • sleep(long n) 和 wait(long n) 的区别
      • step 1
      • step 2
      • step 3
      • step 4
      • step 5
    • 同步模式之保护性暂停
      • 定义
      • 实现
      • 应用
    • 带超时版 GuardedObject
    • join原理
    • 多任务版 GuardedObject
    • 异步模式之生产者/消费者
      • 定义
      • 实现
      • 应用
    • Park & Unpark
      • 基本使用
      • 特点
      • 原理之 park & unpark
        • 先park再unpark
        • 先unpark后park

wait nofity

小故事 - 为什么需要 wait

由于条件不满足,小南不能继续进行计算

但小南如果一直占用着锁,其它人就得一直阻塞,效率太低

剑指JUC原理-6.wait notify_第1张图片

于是老王单开了一间休息室(调用 wait 方法),让小南到休息室(WaitSet)等着去了,但这时锁释放开,
其它人可以由老王随机安排进屋

直到小M将烟送来,大叫一声 [ 你的烟到了 ] (调用 notify 方法)

剑指JUC原理-6.wait notify_第2张图片

小南于是可以离开休息室,重新进入竞争锁的队列

剑指JUC原理-6.wait notify_第3张图片

原理之 wait / notify

剑指JUC原理-6.wait notify_第4张图片

  • Owner 线程发现条件不满足,调用 wait 方法,即可进入 WaitSet 变为 WAITING 状态
  • BLOCKED 和 WAITING 的线程都处于阻塞状态,不占用 CPU 时间片
  • BLOCKED 线程会在 Owner 线程释放锁时唤醒
  • WAITING 线程会在 Owner 线程调用 notify 或 notifyAll 时唤醒,但唤醒后并不意味者立刻获得锁,仍需进入
    EntryList 重新竞争

API 介绍

obj.wait() 让进入 object 监视器的线程到 waitSet 等待

obj.notify() 在 object 上正在 waitSet 等待的线程中随机挑一个唤醒

obj.notifyAll() 让 object 上正在 waitSet 等待的线程全部唤醒

它们都是线程之间进行协作的手段,都属于 Object 对象的方法。必须获得此对象的锁,才能调用这几个方法

final static Object obj = new Object();
public static void main(String[] args) {
 new Thread(() -> {
 synchronized (obj) {
 log.debug("执行....");
 try {
 obj.wait(); // 让线程在obj上一直等待下去
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 log.debug("其它代码....");
 }
 }).start();
 new Thread(() -> {
 synchronized (obj) {
 log.debug("执行....");
 try {
 obj.wait(); // 让线程在obj上一直等待下去
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 log.debug("其它代码....");
 }
 }).start();
 // 主线程两秒后执行
 sleep(2);
 log.debug("唤醒 obj 上其它线程");
 synchronized (obj) {
 obj.notify(); // 唤醒obj上一个线程
 // obj.notifyAll(); // 唤醒obj上所有等待线程
 }
}

notify 的一种结果

20:00:53.096 [Thread-0] c.TestWaitNotify - 执行.... 
20:00:53.099 [Thread-1] c.TestWaitNotify - 执行.... 
20:00:55.096 [main] c.TestWaitNotify - 唤醒 obj 上其它线程
20:00:55.096 [Thread-0] c.TestWaitNotify - 其它代码.... 

notifyAll 的结果

19:58:15.457 [Thread-0] c.TestWaitNotify - 执行.... 
19:58:15.460 [Thread-1] c.TestWaitNotify - 执行.... 
19:58:17.456 [main] c.TestWaitNotify - 唤醒 obj 上其它线程
19:58:17.456 [Thread-1] c.TestWaitNotify - 其它代码.... 
19:58:17.456 [Thread-0] c.TestWaitNotify - 其它代码.... 

wait() 方法会释放对象的锁,进入 WaitSet 等待区,从而让其他线程就机会获取对象的锁。无限制等待,直到
notify 为止

wait(long n) 有时限的等待, 到 n 毫秒后结束等待(如果等待期间,被其他线程唤醒了,就不会继续等待了),或是被 notify

进入wait源码查看:

在这里插入图片描述

无参方法相当于调用了一个wait(0)

wait notify 的正确姿势

开始之前先看看

sleep(long n) 和 wait(long n) 的区别

  • sleep 是 Thread 方法,而 wait 是 Object 的方法
  • sleep 不需要强制和 synchronized 配合使用,但 wait 需要和 synchronized 一起用
  • sleep 在睡眠的同时,不会释放对象锁的,但 wait 在等待的时候会释放对象锁
  • 它们状态都是 TIMED_WAITING

以一个例子来展示:

static final Object lock = new Object();
    public static void main(String[] args) throws InterruptedException {
        new Thread(() -> {
            synchronized (lock) {

                System.out.println("子线程1获得锁");
                try {
//                    Thread.sleep(20000);
                    // 如果使用sleep 那么主线程不能释放锁
                    lock.wait(20000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "t1").start();

        Thread.sleep(1000);
        synchronized (lock) {
            System.out.println("子线程2获得锁");
        }
    }

输出:

如果使用Thread.sleep(20000);

输出 子线程1获得锁 20s后输出 子线程2获得锁

如果使用lock.wait(20000);
输出 子线程1获得锁 1s后输出 子线程2获得锁

step 1

static final Object room = new Object();
static boolean hasCigarette = false;
static boolean hasTakeout = false;

思考下面的解决方案好不好,为什么?

new Thread(() -> {
 synchronized (room) {
 log.debug("有烟没?[{}]", hasCigarette);
 if (!hasCigarette) {
 log.debug("没烟,先歇会!");
 sleep(2);
 }
 log.debug("有烟没?[{}]", hasCigarette);
 if (hasCigarette) {
 log.debug("可以开始干活了");
 }
 }
}, "小南").start();
for (int i = 0; i < 5; i++) {
 new Thread(() -> {
 synchronized (room) {
 log.debug("可以开始干活了");
 }
 }, "其它人").start();
}
sleep(1);
new Thread(() -> {
 // 这里能不能加 synchronized (room)?
 hasCigarette = true;
 log.debug("烟到了噢!");
}, "送烟的").start()

输出

20:49:49.883 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:49:49.887 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:49:50.882 [送烟的] c.TestCorrectPosture - 烟到了噢!
20:49:51.887 [小南] c.TestCorrectPosture - 有烟没?[true] 
20:49:51.887 [小南] c.TestCorrectPosture - 可以开始干活了
20:49:51.887 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.887 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.888 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.888 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.888 [其它人] c.TestCorrectPosture - 可以开始干活了
  • 其它干活的线程,都要一直阻塞,效率太低
  • 小南线程必须睡足 2s 后才能醒来,就算烟提前送到,也无法立刻醒来
  • 加了 synchronized (room) 后,就好比小南在里面反锁了门睡觉,烟根本没法送进门,main 没加
    synchronized 就好像 main 线程是翻窗户进来的
  • 解决方法,使用 wait - notify 机制

step 2

思考下面的实现行吗,为什么?

new Thread(() -> {
 synchronized (room) {
 log.debug("有烟没?[{}]", hasCigarette);
 if (!hasCigarette) {
 log.debug("没烟,先歇会!");
 try {
 room.wait(2000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 log.debug("有烟没?[{}]", hasCigarette);
 if (hasCigarette) {
 log.debug("可以开始干活了");
 }
 }
}, "小南").start();
for (int i = 0; i < 5; i++) {
 new Thread(() -> {
 synchronized (room) {
 log.debug("可以开始干活了");
 }
 }, "其它人").start();
}
sleep(1);
new Thread(() -> {
 synchronized (room) {
 hasCigarette = true;
 log.debug("烟到了噢!");
 room.notify();
 }
}, "送烟的").start();

输出:

20:51:42.489 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:51:42.493 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:51:42.493 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.493 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.494 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.494 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.494 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:43.490 [送烟的] c.TestCorrectPosture - 烟到了噢!
20:51:43.490 [小南] c.TestCorrectPosture - 有烟没?[true] 
20:51:43.490 [小南] c.TestCorrectPosture - 可以开始干活了
  • 解决了其它干活的线程阻塞的问题
  • 但如果有其它线程也在等待条件呢?

step 3

new Thread(() -> {
 synchronized (room) {
 log.debug("有烟没?[{}]", hasCigarette);
 if (!hasCigarette) {
 log.debug("没烟,先歇会!");
 try {
 room.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 log.debug("有烟没?[{}]", hasCigarette);
 if (hasCigarette) {
 log.debug("可以开始干活了");
 } else {
 log.debug("没干成活...");
 }
 }
}, "小南").start();

new Thread(() -> {
 synchronized (room) {
 Thread thread = Thread.currentThread();
 log.debug("外卖送到没?[{}]", hasTakeout);
 if (!hasTakeout) {
 log.debug("没外卖,先歇会!");
 try {
 room.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 log.debug("外卖送到没?[{}]", hasTakeout);
 if (hasTakeout) {
 log.debug("可以开始干活了");
 } else {
 log.debug("没干成活...");
 }
 }
}, "小女").start();

sleep(1);

new Thread(() -> {
 synchronized (room) {
 hasTakeout = true;
 log.debug("外卖到了噢!");
 room.notify();
 }
}, "送外卖的").start();

输出

20:53:12.173 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:53:12.176 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:53:12.176 [小女] c.TestCorrectPosture - 外卖送到没?[false] 
20:53:12.176 [小女] c.TestCorrectPosture - 没外卖,先歇会!
20:53:13.174 [送外卖的] c.TestCorrectPosture - 外卖到了噢!
20:53:13.174 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:53:13.174 [小南] c.TestCorrectPosture - 没干成活... 
  • notify 只能随机唤醒一个 WaitSet 中的线程,这时如果有其它线程也在等待,那么就可能唤醒不了正确的线
    程,称之为**【虚假唤醒】**
  • 解决方法,改为 notifyAll

step 4

new Thread(() -> {
 synchronized (room) {
 hasTakeout = true;
 log.debug("外卖到了噢!");
 room.notifyAll();
 }
}, "送外卖的").start();

输出

20:55:23.978 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:55:23.982 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:55:23.982 [小女] c.TestCorrectPosture - 外卖送到没?[false] 
20:55:23.982 [小女] c.TestCorrectPosture - 没外卖,先歇会!
20:55:24.979 [送外卖的] c.TestCorrectPosture - 外卖到了噢!
20:55:24.979 [小女] c.TestCorrectPosture - 外卖送到没?[true] 
20:55:24.980 [小女] c.TestCorrectPosture - 可以开始干活了
20:55:24.980 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:55:24.980 [小南] c.TestCorrectPosture - 没干成活... 
  • 用 notifyAll 仅解决某个线程的唤醒问题,但使用 if + wait 判断仅有一次机会,一旦条件不成立,就没有重新
    判断的机会了
  • 解决方法,用 while + wait,当条件不成立,再次 wait

step 5

将 if 改为 while

if (!hasCigarette) {
 log.debug("没烟,先歇会!");
 try {
 room.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

改动后

while (!hasCigarette) {
 log.debug("没烟,先歇会!");
 try {
 room.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

输出

20:58:34.322 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:58:34.326 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:58:34.326 [小女] c.TestCorrectPosture - 外卖送到没?[false] 
20:58:34.326 [小女] c.TestCorrectPosture - 没外卖,先歇会!
20:58:35.323 [送外卖的] c.TestCorrectPosture - 外卖到了噢!
20:58:35.324 [小女] c.TestCorrectPosture - 外卖送到没?[true] 
20:58:35.324 [小女] c.TestCorrectPosture - 可以开始干活了
20:58:35.324 [小南] c.TestCorrectPosture - 没烟,先歇会!

模板:

synchronized(lock) {
 while(条件不成立) {
 lock.wait();
 }
 // 干活
}
//另一个线程
synchronized(lock) {
 lock.notifyAll();
}

同步模式之保护性暂停

定义

即 Guarded Suspension,用在一个线程等待另一个线程的执行结果

要点:

  • 有一个结果需要从一个线程传递到另一个线程,让他们关联同一个 GuardedObject
  • 如果有结果不断从一个线程到另一个线程那么可以使用消息队列(见生产者/消费者)
  • JDK 中,join 的实现、Future 的实现,采用的就是此模式
  • 因为要等待另一方的结果,因此归类到同步模式

剑指JUC原理-6.wait notify_第5张图片

实现

class GuardedObject {
 	private Object response;
 	private final Object lock = new Object();
 	public Object get() {
			synchronized (lock) {
			// 条件不满足则等待
				while (response == null) {
					try {
						lock.wait();
					}catch (InterruptedException e) {
						e.printStackTrace();
					}
				}
			return response;
		}
	}
 	public void complete(Object response) {
		synchronized (lock) {
			// 条件满足,通知等待线程
			this.response = response;
			lock.notifyAll();
		}
 	}
}

应用

一个线程等待另一个线程的执行结果

join的局限性是只能等第二个线程结束

用join那种办法,等待结果那个变量只能设计成全局的,而使用保护性暂停的话可以设计成局部的

public static void main(String[] args) {
 GuardedObject guardedObject = new GuardedObject();
 new Thread(() -> {
	try {
		// 子线程执行下载
		List<String> response = download();// 执行下载操作,去完成网页的信息
		log.debug("download complete...");
		guardedObject.complete(response);
	} catch (IOException e) {
		e.printStackTrace();
	}
 }).start();
 log.debug("waiting...");
 // 主线程阻塞等待
 Object response = guardedObject.get();
 log.debug("get response: [{}] lines", ((List<String>) response).size());
}

执行结果:

08:42:18.568 [main] c.TestGuardedObject - waiting...
08:42:23.312 [Thread-0] c.TestGuardedObject - download complete...
08:42:23.312 [main] c.TestGuardedObject - get response: [3] lines

可以看到,是存在等待时间的,大概5s左右

带超时版 GuardedObject

如果要控制超时时间呢

class GuardedObjectV2 {
 	private Object response;
 	private final Object lock = new Object();
 	public Object get(long millis) {
		synchronized (lock) {
				// 1) 记录最初时间
				long begin = System.currentTimeMillis();
				// 2) 已经经历的时间
				long timePassed = 0;
				while (response == null) {
					// 4) 假设 millis 是 1000,结果在 400 时唤醒了,那么还有 600 要等
					long waitTime = millis - timePassed;
					log.debug("waitTime: {}", waitTime);
					if (waitTime <= 0) {
						log.debug("break...");
						break;
					}
					try {
						lock.wait(waitTime);
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
					// 3) 如果提前被唤醒,这时已经经历的时间假设为 400
					timePassed = System.currentTimeMillis() - begin;
					log.debug("timePassed: {}, object is null {}", timePassed, response == null);
				}
			return response;
		}
 	}
 	public void complete(Object response) {
		synchronized (lock) {
			// 条件满足,通知等待线程
			this.response = response;
			log.debug("notify...");
			lock.notifyAll();
		}
 	}
}

测试,没有超时

		public static void main(String[] args) {
            GuardedObjectV2 v2 = new GuardedObjectV2();
            new Thread(() -> {
                sleep(1);
                v2.complete(null);
                sleep(1);
                v2.complete(Arrays.asList("a", "b", "c"));
            }).start();
            Object response = v2.get(2500);
            if (response != null) {
                log.debug("get response: [{}] lines", ((List<String>) response).size());
            } else {
                log.debug("can't get response");
            }
        }

输出:

08:49:39.917 [main] c.GuardedObjectV2 - waitTime: 2500
08:49:40.917 [Thread-0] c.GuardedObjectV2 - notify...
08:49:40.917 [main] c.GuardedObjectV2 - timePassed: 1003, object is null true
08:49:40.917 [main] c.GuardedObjectV2 - waitTime: 1497
08:49:41.918 [Thread-0] c.GuardedObjectV2 - notify...
08:49:41.918 [main] c.GuardedObjectV2 - timePassed: 2004, object is null false
08:49:41.918 [main] c.TestGuardedObjectV2 - get response: [3] lines

测试,超时

// 等待时间不足
List<String> lines = v2.get(1500);

输出:

08:47:54.963 [main] c.GuardedObjectV2 - waitTime: 1500
08:47:55.963 [Thread-0] c.GuardedObjectV2 - notify...
08:47:55.963 [main] c.GuardedObjectV2 - timePassed: 1002, object is null true
08:47:55.963 [main] c.GuardedObjectV2 - waitTime: 498
08:47:56.461 [main] c.GuardedObjectV2 - timePassed: 1500, object is null true
08:47:56.461 [main] c.GuardedObjectV2 - waitTime: 0
08:47:56.461 [main] c.GuardedObjectV2 - break...
08:47:56.461 [main] c.TestGuardedObjectV2 - can't get response
08:47:56.963 [Thread-0] c.GuardedObjectV2 - notify...

join原理

保护性暂停,是一个线程等待另一个线程的结果

而join是一个线程等待另一个线程的结束

进入源码查看 thread.join 和 带超时版 GuardedObject 有异曲同工之妙

剑指JUC原理-6.wait notify_第6张图片

进入源码可以发现,join的底层也是使用的保护性暂停的手段

是调用者轮询检查线程 alive 状态

t1.join();

等价于下面的代码

synchronized (t1) {
 // 调用者线程进入 t1 的 waitSet 等待, 直到 t1 运行结束
 while (t1.isAlive()) {
 t1.wait(0);
 }
}

多任务版 GuardedObject

图中 Futures 就好比居民楼一层的信箱(每个信箱有房间编号),左侧的 t0,t2,t4 就好比等待邮件的居民,右
侧的 t1,t3,t5 就好比邮递员

如果需要在多个类之间使用 GuardedObject 对象,作为参数传递不是很方便,因此设计一个用来解耦的中间类,
这样不仅能够解耦【结果等待者】和【结果生产者】,还能够同时支持多个任务的管理

剑指JUC原理-6.wait notify_第7张图片

新增 id 用来标识 Guarded Object

class GuardedObject {
    // 标识 Guarded Object
    private int id;
    public GuardedObject(int id) {
        this.id = id;
    }
    public int getId() {
        return id;
    }
    // 结果
    private Object response;
    // 获取结果
    // timeout 表示要等待多久 2000
    public Object get(long timeout) {
        synchronized (this) {
            // 开始时间 15:00:00
            long begin = System.currentTimeMillis();
            // 经历的时间
            long passedTime = 0;
            while (response == null) {
                // 这一轮循环应该等待的时间
                long waitTime = timeout - passedTime;
                // 经历的时间超过了最大等待时间时,退出循环
                if (timeout - passedTime <= 0) {
                    break;
                }
                try {
                    this.wait(waitTime); // 虚假唤醒 15:00:01
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 求得经历时间
                passedTime = System.currentTimeMillis() - begin; // 15:00:02 1s
            }
            return response;
        }
    }
    // 产生结果
    public void complete(Object response) {
        synchronized (this) {
            // 给结果成员变量赋值
            this.response = response;
            this.notifyAll();
        }
    }
}

中间解耦类

class Mailboxes {
    private static Map<Integer, GuardedObject> boxes = new Hashtable<>();
    private static int id = 1;
    // 产生唯一 id
    private static synchronized int generateId() {
        return id++;
    }
    public static GuardedObject getGuardedObject(int id) {
        return boxes.remove(id);
    }
    public static GuardedObject createGuardedObject() {
        GuardedObject go = new GuardedObject(generateId());
        boxes.put(go.getId(), go);
        return go;
    }
    public static Set<Integer> getIds() {
        return boxes.keySet();
    }
}

其中中间解耦类中的共享资源要设置成线程安全的,如synchronizedHashtable

业务相关类

class People extends Thread{
 @Override
 public void run() {
 // 收信
 GuardedObject guardedObject = Mailboxes.createGuardedObject();
 log.debug("开始收信 id:{}", guardedObject.getId());
 Object mail = guardedObject.get(5000);
 log.debug("收到信 id:{}, 内容:{}", guardedObject.getId(), mail);
 }
}

class Postman extends Thread {
 private int id;
 private String mail;
 public Postman(int id, String mail) {
 this.id = id;
 this.mail = mail;
 }
 @Override
 public void run() {
 GuardedObject guardedObject = Mailboxes.getGuardedObject(id);
 log.debug("送信 id:{}, 内容:{}", id, mail);
 guardedObject.complete(mail);
 }
}

测试

public static void main(String[] args) throws InterruptedException {
 for (int i = 0; i < 3; i++) {
 new People().start();
 }
 Sleeper.sleep(1);
 for (Integer id : Mailboxes.getIds()) {
 new Postman(id, "内容" + id).start();
 }
}

某次运行结果

10:35:05.689 c.People [Thread-1] - 开始收信 id:3
10:35:05.689 c.People [Thread-2] - 开始收信 id:1
10:35:05.689 c.People [Thread-0] - 开始收信 id:2
10:35:06.688 c.Postman [Thread-4] - 送信 id:2, 内容:内容2
10:35:06.688 c.Postman [Thread-5] - 送信 id:1, 内容:内容1
10:35:06.688 c.People [Thread-0] - 收到信 id:2, 内容:内容2
10:35:06.688 c.People [Thread-2] - 收到信 id:1, 内容:内容1
10:35:06.688 c.Postman [Thread-3] - 送信 id:3, 内容:内容3
10:35:06.689 c.People [Thread-1] - 收到信 id:3, 内容:内容3

异步模式之生产者/消费者

之所以是异步,是因为,产生了一个消息,并不能立刻被消费。而保护性暂停是同步的

定义

要点

  • 与前面的保护性暂停中的 GuardObject 不同,不需要产生结果和消费结果的线程一一对应
  • 消费队列可以用来平衡生产和消费的线程资源
  • 生产者仅负责产生结果数据,不关心数据该如何处理,而消费者专心处理结果数据
  • 消息队列是有容量限制的,满时不会再加入数据,空时不会再消耗数据
  • JDK 中各种阻塞队列,采用的就是这种模式

剑指JUC原理-6.wait notify_第8张图片

实现

class Message {
    private int id;
    private Object message;
    public Message(int id, Object message) {
        this.id = id;
        this.message = message;
    }
    public int getId() {
        return id;
    }
    public Object getMessage() {
        return message;
    }
}
class MessageQueue {
    private LinkedList<Message> queue;
    private int capacity;
    public MessageQueue(int capacity) {
        this.capacity = capacity;
        queue = new LinkedList<>();
    }
    public Message take() {
        synchronized (queue) {
            while (queue.isEmpty()) {
                log.debug("没货了, wait");
                try {
                    queue.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            Message message = queue.removeFirst();
            queue.notifyAll();
            return message;
        }
    }
    public void put(Message message) {
        synchronized (queue) {
            while (queue.size() == capacity) {
                log.debug("库存已达上限, wait");
                try {
                    queue.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            queue.addLast(message);
            queue.notifyAll();
        }
    }
}

应用

public static void main(String[] args) {
        MessageQueue messageQueue = new MessageQueue(2);
// 4 个生产者线程, 下载任务
        for (int i = 0; i < 4; i++) {
            int id = i;
            new Thread(() -> {
                try {

                    System.out.println("download...");
                    List<String> response = Downloader.download();
                    System.out.println("try put message()"+ id);
                    messageQueue.put(new Message(id, response));
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }, "生产者" + i).start();
        }
// 1 个消费者线程, 处理结果
        new Thread(() -> {
            while (true) {
                Message message = messageQueue.take();
                List<String> response = (List<String>) message.getMessage();
                System.out.println("take message({}):" + message.getId());
            }
        }, "消费者").start();

    }
10:48:38.070 [生产者3] c.TestProducerConsumer - download...
10:48:38.070 [生产者0] c.TestProducerConsumer - download...
10:48:38.070 [消费者] c.MessageQueue - 没货了, wait
10:48:38.070 [生产者1] c.TestProducerConsumer - download...
10:48:38.070 [生产者2] c.TestProducerConsumer - download...
10:48:41.236 [生产者1] c.TestProducerConsumer - try put message(1)
10:48:41.237 [生产者2] c.TestProducerConsumer - try put message(2)
10:48:41.236 [生产者0] c.TestProducerConsumer - try put message(0)
10:48:41.237 [生产者3] c.TestProducerConsumer - try put message(3)
10:48:41.239 [生产者2] c.MessageQueue - 库存已达上限, wait
10:48:41.240 [生产者1] c.MessageQueue - 库存已达上限, wait
10:48:41.240 [消费者] c.TestProducerConsumer - take message(0): [3] lines
10:48:41.240 [生产者2] c.MessageQueue - 库存已达上限, wait
10:48:41.240 [消费者] c.TestProducerConsumer - take message(3): [3] lines
10:48:41.240 [消费者] c.TestProducerConsumer - take message(1): [3] lines
10:48:41.240 [消费者] c.TestProducerConsumer - take message(2): [3] lines
10:48:41.240 [消费者] c.MessageQueue - 没货了, wait

多加几个消费者线程本质上也是一样的。

Park & Unpark

基本使用

它们是 LockSupport 类中的方法

// 暂停当前线程
LockSupport.park(); 

// 恢复某个线程的运行
LockSupport.unpark(暂停线程对象)

先 park 再 unpark

Thread t1 = new Thread(() -> {
 log.debug("start...");
 sleep(1);
 log.debug("park...");
 LockSupport.park();
 log.debug("resume...");
},"t1");
t1.start();
sleep(2);
log.debug("unpark...");
LockSupport.unpark(t1);

输出

18:42:52.585 c.TestParkUnpark [t1] - start... 
18:42:53.589 c.TestParkUnpark [t1] - park... 
18:42:54.583 c.TestParkUnpark [main] - unpark... 
18:42:54.583 c.TestParkUnpark [t1] - resume... 

先 unpark 再 park

Thread t1 = new Thread(() -> {
 log.debug("start...");
 sleep(2);
 log.debug("park...");
 LockSupport.park();
 log.debug("resume...");
}, "t1");
t1.start();
sleep(1);
log.debug("unpark...");
LockSupport.unpark(t1);

输出

18:43:50.765 c.TestParkUnpark [t1] - start... 
18:43:51.764 c.TestParkUnpark [main] - unpark... 
18:43:52.769 c.TestParkUnpark [t1] - park... 
18:43:52.769 c.TestParkUnpark [t1] - resume... 

特点

与 Object 的 wait & notify 相比

  • wait,notify 和 notifyAll 必须配合 Object Monitor (必须先获得monitor锁才可以)一起使用,而 park,unpark 不必
  • park & unpark 是以线程为单位来【阻塞】和【唤醒】线程,而 notify 只能随机唤醒一个等待线程,notifyAll
    是唤醒所有等待线程,就不那么【精确】
  • park & unpark 可以先 unpark,而 wait & notify 不能先 notify

原理之 park & unpark

每个线程都有自己的一个 Parker 对象,由三部分组成 _counter , _cond 和 _mutex

原理分为两种情况

先park再unpark

剑指JUC原理-6.wait notify_第9张图片

  1. 当前线程调用 Unsafe.park() 方法
  2. 检查 _counter ,本情况为 0,这时,获得 _mutex 互斥锁
  3. 线程进入 _cond 条件变量阻塞
  4. 设置 _counter = 0

剑指JUC原理-6.wait notify_第10张图片

  1. 调用 Unsafe.unpark(Thread_0) 方法,设置 _counter 为 1
  2. 唤醒 _cond 条件变量中的 Thread_0
  3. Thread_0 恢复运行
  4. 设置 _counter 为 0
先unpark后park

剑指JUC原理-6.wait notify_第11张图片

  1. 调用 Unsafe.unpark(Thread_0) 方法,设置 _counter 为 1
  2. 当前线程调用 Unsafe.park() 方法
  3. 检查 _counter ,本情况为 1,这时线程无需阻塞,继续运行
  4. 设置 _counter 为 0

注意:多次调用unpark也仅仅只是将 counter设置为1

你可能感兴趣的:(JUC,java,开发语言,juc)