LaTeX在线编辑器:Equation Editor
二阶常系数线性齐次微分方程:
y ′ ′ ( x ) + p y ′ ( x ) + q y ( x ) = 0 y''(x)+py'(x)+qy(x)=0 y′′(x)+py′(x)+qy(x)=0
二阶常系数线性非齐次微分方程:
y ′ ′ ( x ) + p y ′ ( x ) + q y ( x ) = g ( x ) y''(x)+py'(x)+qy(x)=g(x) y′′(x)+py′(x)+qy(x)=g(x)
二阶常系数线性非齐次微分方程的通解:
y ( x ) = 齐次通解 + 非齐次特解 = y 0 ( x ) + y ∗ ( x ) y(x)=齐次通解+非齐次特解=y_0(x)+y^*(x) y(x)=齐次通解+非齐次特解=y0(x)+y∗(x)
特征方程为
r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0
根据特征方程的根 r 1 , r 2 r_1,r_2 r1,r2的情况,设通解为
y 0 ( x ) = { C 1 e r 1 x + C 2 e r 2 x , r 1 ≠ r 2 ( C 1 + C 2 x ) e r 1 x , r 1 = r 2 e α x [ C 1 cos ( β x ) + C 2 sin ( β x ) ] , r = α ± i β y_0(x)= \begin{cases} C_1e^{r_1x}+C_2e^{r_2x}, & r_1 \neq r_2 \\ (C_1+C_2x)e^{r_1x}, & r_1 = r_2 \\ e^{\alpha x}[C_1\cos(\beta x) + C_2\sin(\beta x)], & r = \alpha \pm \mathrm{i} \beta \end{cases} y0(x)=⎩ ⎨ ⎧C1er1x+C2er2x,(C1+C2x)er1x,eαx[C1cos(βx)+C2sin(βx)],r1=r2r1=r2r=α±iβ
g ( x ) g(x) g(x)的形式 | 特解 y ∗ ( x ) y^*(x) y∗(x)的形式 |
---|---|
a a a | A A A |
a x + b ax+b ax+b | A x + B Ax+B Ax+B |
a x 2 + b x + c ax^2+bx+c ax2+bx+c | A x 2 + B x + C Ax^2+Bx+C Ax2+Bx+C |
a e α x ae^{\alpha x} aeαx | A e α x Ae^{\alpha x} Aeαx |
( a x + b ) e α x (ax+b)e^{\alpha x} (ax+b)eαx | ( A x + B ) e α x (Ax+B)e^{\alpha x} (Ax+B)eαx |
( a x 2 + b x + c ) e α x (ax^2+bx+c)e^{\alpha x} (ax2+bx+c)eαx | ( A x 2 + B x + C ) e α x (Ax^2+Bx+C)e^{\alpha x} (Ax2+Bx+C)eαx |
(1) α ≠ 0 \alpha \neq 0 α=0时
g ( x ) g(x) g(x)的形式 | 特解 y ∗ ( x ) y^*(x) y∗(x)的形式 |
---|---|
a e α x ae^{\alpha x} aeαx | x A e α x xAe^{\alpha x} xAeαx |
( a x + b ) e α x (ax+b)e^{\alpha x} (ax+b)eαx | x ( A x + B ) e α x x(Ax+B)e^{\alpha x} x(Ax+B)eαx |
( a x 2 + b x + c ) e α x (ax^2+bx+c)e^{\alpha x} (ax2+bx+c)eαx | x ( A x 2 + B x + C ) e α x x(Ax^2+Bx+C)e^{\alpha x} x(Ax2+Bx+C)eαx |
(2) α = 0 \alpha=0 α=0时
g ( x ) g(x) g(x)的形式 | 特解 y ∗ ( x ) y^*(x) y∗(x)的形式 |
---|---|
a a a | x A xA xA |
a x + b ax+b ax+b | x ( A x + B ) x(Ax+B) x(Ax+B) |
a x 2 + b x + c ax^2+bx+c ax2+bx+c | x ( A x 2 + B x + C ) x(Ax^2+Bx+C) x(Ax2+Bx+C) |
(1) α ≠ 0 \alpha \neq 0 α=0时
g ( x ) g(x) g(x)的形式 | 特解 y ∗ ( x ) y^*(x) y∗(x)的形式 |
---|---|
a e α x ae^{\alpha x} aeαx | x 2 A e α x x^2Ae^{\alpha x} x2Aeαx |
( a x + b ) e α x (ax+b)e^{\alpha x} (ax+b)eαx | x 2 ( A x + B ) e α x x^2(Ax+B)e^{\alpha x} x2(Ax+B)eαx |
( a x 2 + b x + c ) e α x (ax^2+bx+c)e^{\alpha x} (ax2+bx+c)eαx | x 2 ( A x 2 + B x + C ) e α x x^2(Ax^2+Bx+C)e^{\alpha x} x2(Ax2+Bx+C)eαx |
(2) α = 0 \alpha=0 α=0时
g ( x ) g(x) g(x)的形式 | 特解 y ∗ ( x ) y^*(x) y∗(x)的形式 |
---|---|
a a a | x 2 A x^2A x2A |
a x + b ax+b ax+b | x 2 ( A x + B ) x^2(Ax+B) x2(Ax+B) |
a x 2 + b x + c ax^2+bx+c ax2+bx+c | x 2 ( A x 2 + B x + C ) x^2(Ax^2+Bx+C) x2(Ax2+Bx+C) |
g ( x ) g(x) g(x)的形式 | 特解 y ∗ ( x ) y^*(x) y∗(x)的形式 |
---|---|
e α x [ a cos ( β x ) + b sin ( β x ) ] e^{\alpha x}[a\cos(\beta x) + b\sin(\beta x)] eαx[acos(βx)+bsin(βx)] | e α x [ A cos ( β x ) + B sin ( β x ) ] e^{\alpha x}[A\cos(\beta x) + B\sin(\beta x)] eαx[Acos(βx)+Bsin(βx)] |
e α x [ ( a x + b ) cos ( β x ) + ( c x + d ) sin ( β x ) ] e^{\alpha x}[(ax+b)\cos(\beta x) + (cx+d)\sin(\beta x)] eαx[(ax+b)cos(βx)+(cx+d)sin(βx)] | e α x [ ( A x + B ) cos ( β x ) + ( C x + D ) sin ( β x ) ] e^{\alpha x}[(Ax+B)\cos(\beta x) + (Cx+D)\sin(\beta x)] eαx[(Ax+B)cos(βx)+(Cx+D)sin(βx)] |
e α x [ ( a x 2 + b x + c ) cos ( β x ) + ( d x 2 + e x + f ) sin ( β x ) ] e^{\alpha x}[(ax^2+bx+c)\cos(\beta x) + (dx^2+ex+f)\sin(\beta x)] eαx[(ax2+bx+c)cos(βx)+(dx2+ex+f)sin(βx)] | e α x [ ( A x 2 + B x + C ) cos ( β x ) + ( D x 2 + E x + F ) sin ( β x ) ] e^{\alpha x}[(Ax^2+Bx+C)\cos(\beta x) + (Dx^2+Ex+F)\sin(\beta x)] eαx[(Ax2+Bx+C)cos(βx)+(Dx2+Ex+F)sin(βx)] |
g ( x ) g(x) g(x)的形式 | 特解 y ∗ ( x ) y^*(x) y∗(x)的形式 |
---|---|
e α x [ a cos ( β x ) + b sin ( β x ) ] e^{\alpha x}[a\cos(\beta x) + b\sin(\beta x)] eαx[acos(βx)+bsin(βx)] | x e α x [ A cos ( β x ) + B sin ( β x ) ] xe^{\alpha x}[A\cos(\beta x) + B\sin(\beta x)] xeαx[Acos(βx)+Bsin(βx)] |
e α x [ ( a x + b ) cos ( β x ) + ( c x + d ) sin ( β x ) ] e^{\alpha x}[(ax+b)\cos(\beta x) + (cx+d)\sin(\beta x)] eαx[(ax+b)cos(βx)+(cx+d)sin(βx)] | x e α x [ ( A x + B ) cos ( β x ) + ( C x + D ) sin ( β x ) ] xe^{\alpha x}[(Ax+B)\cos(\beta x) + (Cx+D)\sin(\beta x)] xeαx[(Ax+B)cos(βx)+(Cx+D)sin(βx)] |
e α x [ ( a x 2 + b x + c ) cos ( β x ) + ( d x 2 + e x + f ) sin ( β x ) ] e^{\alpha x}[(ax^2+bx+c)\cos(\beta x) + (dx^2+ex+f)\sin(\beta x)] eαx[(ax2+bx+c)cos(βx)+(dx2+ex+f)sin(βx)] | x e α x [ ( A x 2 + B x + C ) cos ( β x ) + ( D x 2 + E x + F ) sin ( β x ) ] xe^{\alpha x}[(Ax^2+Bx+C)\cos(\beta x) + (Dx^2+Ex+F)\sin(\beta x)] xeαx[(Ax2+Bx+C)cos(βx)+(Dx2+Ex+F)sin(βx)] |
求解二阶常系数线性非齐次微分方程时,需要对特解进行二次求导,若特解是两个含 x x x项的乘积,则求导时需要不断使用求导乘法法则,且需代入方程求解系数,这个过程的计算量比较大。有一个小技巧可以稍微降低运算量:
若特解是两个含 x 项的乘积,可将两项分别记为 y 1 和 y 2 此时特解为: y ∗ = y 1 y 2 先对特解求一阶导可得: ( y ∗ ) ′ = y 1 ′ y 2 + y 1 y 2 ′ 再对特解求二阶导可得: ( y ∗ ) ′ ′ = y 1 ′ ′ y 2 + 2 y 1 ′ y 2 ′ + y 1 y 2 ′ ′ 计算 y 1 ′ , y 1 ′ ′ , y 2 ′ , y 2 ′ ′ ,代入以上两式,整理并化简 最后代入原方程: y ′ ′ ( x ) + p y ′ ( x ) + q y ( x ) = 0 \begin{aligned} &若特解是两个含x项的乘积,可将两项分别记为y_1和y_2 \\ &此时特解为:y^*=y_1y_2 \\ &先对特解求一阶导可得:(y^*)'=y_1'y_2+y_1y_2' \\ &再对特解求二阶导可得:(y^*)''=y_1''y_2+2y_1'y_2'+y_1y_2'' \\ &计算y_1',y_1'',y_2',y_2'',代入以上两式,整理并化简 \\ &最后代入原方程:y''(x)+py'(x)+qy(x)=0 \\ \end{aligned} 若特解是两个含x项的乘积,可将两项分别记为y1和y2此时特解为:y∗=y1y2先对特解求一阶导可得:(y∗)′=y1′y2+y1y2′再对特解求二阶导可得:(y∗)′′=y1′′y2+2y1′y2′+y1y2′′计算y1′,y1′′,y2′,y2′′,代入以上两式,整理并化简最后代入原方程:y′′(x)+py′(x)+qy(x)=0
建议将 ( y ∗ ) ′ (y^*)' (y∗)′和 ( y ∗ ) ′ ′ (y^*)'' (y∗)′′的式子记下来,以加快运算速度。
【例】 y ′ ′ − 3 y ′ + 2 y = 10 e − x sin x y''-3y'+2y = 10e^{-x} \sin x y′′−3y′+2y=10e−xsinx
特征方程: r 2 − 3 r + 2 = 0 由此设齐次通解: y 0 = C 1 e x + C 2 e 2 x 设非齐次特解: y ∗ = e − x ( A sin x + B cos x ) 记: y 1 = e − x , y 2 = A sin x + B cos x ,则: y ∗ = y 1 y 2 有: y 1 ′ = − e − x , y 2 ′ = A cos x − B sin x 有: y 1 ′ ′ = e − x , y 2 ′ ′ = − A sin x − B cos x 所以有: ( y ∗ ) ′ = y 1 ′ y 2 + y 1 y 2 ′ = e − x [ ( A − B ) cos x − ( A + B ) sin x ] 所以有: ( y ∗ ) ′ ′ = y 1 ′ ′ y 2 + 2 y 1 ′ y 2 ′ + y 1 y 2 ′ ′ = e − x [ 2 B sin x − 2 A cos x ] 最后代入原方程化简: ( A + B ) sin x + ( B − A ) cos x = 2 sin x 求出 A = 1 , B = 1 所以: y ∗ = e − x ( sin x + cos x ) \begin{aligned} &特征方程:r^2-3r+2=0 \\ &由此设齐次通解:y_0=C_1e^x+C_2e^{2x} \\ &设非齐次特解:y^*=e^{-x}(A \sin x+B \cos x) \\ &记:y_1=e^{-x},y_2=A \sin x+B \cos x,则:y^*=y_1y_2 \\ &有:y_1'=-e^{-x},y_2'=A \cos x-B \sin x \\ &有:y_1''=e^{-x},y_2''=-A \sin x-B \cos x \\ &所以有:(y^*)'=y_1'y_2+y_1y_2'=e^{-x}[(A-B)\cos x-(A+B) \sin x] \\ &所以有:(y^*)''=y_1''y_2+2y_1'y_2'+y_1y_2''=e^{-x}[2B\sin x-2A \cos x] \\ &最后代入原方程化简:(A+B)\sin x+(B-A)\cos x=2 \sin x \\ &求出A=1,B=1 \\ &所以:y^*=e^{-x}(\sin x+\cos x) \end{aligned} 特征方程:r2−3r+2=0由此设齐次通解:y0=C1ex+C2e2x设非齐次特解:y∗=e−x(Asinx+Bcosx)记:y1=e−x,y2=Asinx+Bcosx,则:y∗=y1y2有:y1′=−e−x,y2′=Acosx−Bsinx有:y1′′=e−x,y2′′=−Asinx−Bcosx所以有:(y∗)′=y1′y2+y1y2′=e−x[(A−B)cosx−(A+B)sinx]所以有:(y∗)′′=y1′′y2+2y1′y2′+y1y2′′=e−x[2Bsinx−2Acosx]最后代入原方程化简:(A+B)sinx+(B−A)cosx=2sinx求出A=1,B=1所以:y∗=e−x(sinx+cosx)