CV论文阅读大合集

Year Name Area model description drawback
2021 ICML Clip (Contrastive Language-Image Pre-training) contrastive learning、zero-shot learing、mutimodel CV论文阅读大合集_第1张图片 用文本作为监督信号来训练可迁移的视觉模型 CLIP’s zero-shot performance, although comparable to supervised ResNet50, is not yet SOTA, and the authors estimate that to achieve SOTA, CLIP would need to add 1000x more computation, which is unimaginable;CLIP’s zero-shot performs poorly on certain datasets, such as fine-grained classification, abstraction tasks, etc; CLIP performs robustly on natural distribution drift, but still suffers from out-of-domain generalisation, i.e., if the distribution of the test dataset differs significantly from the training set, CLIP will perform poorly; CLIP does not address the data inefficiency challenges of deep learning, and training CLIP requires a large amount of data;
2021 ICLR ViT (VisionTransformer) CV论文阅读大合集_第2张图片 将Transformer应用到vision中:simple, efficient,scalable 当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果
2022 DALL-E 基于文本来生成模型
2021 ICCV Swin Transformer CV论文阅读大合集_第3张图片 使用滑窗和层级式的结构,解决transformer计算量大的问题;披着Transformer皮的CNN
2021 MAE(Masked Autoencoders) self-supervised CV论文阅读大合集_第4张图片 CV版的bert scalablel;very high-capacity models that generalize well
TransMed: Transformers Advance Multi-modal Medical Image Classification CV论文阅读大合集_第5张图片
I3D
2021 Pathway
2021 ICML VILT 视觉文本多模态Transformer 性能不高 推理时间快 训练时间特别慢
2021 NeurIPS ALBEF align before fusion 为了清理noisy data 提出用一个momentum model生成pseudo target

你可能感兴趣的:(CV论文阅读及复现,论文阅读)