- ESG证书:AI预测未来十年职场人的黄金入场券
ESG学习圈
pandaspythondjango
当ChatGPT开始撰写ESG报告,当机器学习模型精准预测企业碳排放轨迹,一场由AI驱动的ESG革命正在颠覆传统可持续发展领域。根据彭博新能源财经预测,到2030年全球ESG资产管理规模将突破50万亿美元,而AI技术将成为撬动这个万亿级市场的核心杠杆。一、AI透视下的ESG黄金时代在微软开发的AI模型ESG-NOW系统中,通过分析全球4300家上市公司近十年的环境数据,成功预测2025年新能源行业
- 云原生边缘计算:分布式智能的时代黎明
桂月二二
云原生边缘计算分布式
引言:从集中式算力到万物智联的范式裂变AT&T边缘节点部署超5000个,特斯拉自动驾驶系统每节点200TOPS算力。国家电网通过边缘计算实现毫秒级电网故障隔离,菜鸟物流分拣效率提升400%。IDC预测2027年边缘基础设施支出将达亿,宝马汽车工厂设备预测性维护准确率达9亿运维成本。一、边缘计算范式进化论1.1算力拓扑结构演变世代大型主机中心化云计算分布式雾计算去中心化边缘计算泛在化神经形态计算体计
- 基于大模型的腮腺多形性腺瘤全周期诊疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2研究现状与趋势二、大模型预测原理与方法2.1大模型概述2.2数据收集与预处理2.3模型训练与优化三、术前预测与评估3.1肿瘤特征预测3.2风险评估3.3案例分析四、术中方案制定与实施4.1手术方案选择4.2面神经保护策略4.3麻醉方案确定五、术后恢复与并发症预测5.1恢复情况预测5.2并发症风险预测5.3案例分析六、术后护理与康复6.1护理措施6.2康复训练6
- 【硬核实战】ETCD+AI智能调度深度整合!从架构设计到调优避坑,手把手教你打造高可用调度系统!
码农突围计划
人工智能etcd大数据
一、核心架构设计:ETCD如何赋能AI调度?架构图:[AI调度引擎]←实时数据→[ETCD集群]↓决策指令[执行层(车辆/物流/交通设备)]核心角色:ETCD:存储调度策略、节点状态、任务队列、实时环境数据(如交通流量、天气)AI模型:基于ETCD数据动态决策(如路径规划、资源分配)调度执行层:接收ETCD下发的指令并执行(如车辆调度、信号灯控制)优势:强一致性:ETCD的Raft协议确保调度策略
- Trae AI 上新 SSHremote:服务器 Python 接口日志排查实战指南
芯作者
DD:日记人工智能深度学习机器学习
在当今的软件开发中,服务器端的稳定性和可靠性至关重要。然而,生产环境中的问题往往难以预测,尤其是接口返回502错误却无日志记录的情况,更是让开发者头疼不已。幸运的是,字节跳动推出的AI原生IDE——Trae,近期上线的SSHremote功能,为远程服务器日志排查提供了全新的解决方案。本文将结合实战案例,深入探讨如何利用TraeAI的SSHremote功能高效排查Python接口日志问题,并分享创新
- Moodle + Websoft9:创新教育的强大组合,助力教学与学习
开源软件
Moodle+Websoft9:构建未来课堂的技术基石一、Moodle:开源生态的深度解析•模块化设计:支持超800个官方插件,如H5P交互内容创作、BigBlueButton虚拟课堂,满足个性化教学需求。•学习分析引擎:内置LearningAnalyticsAPI,可集成Python/R语言进行深度学习,预测学生学业风险。•移动优先战略:MoodleApp支持离线学习、扫码签到,2023年新增A
- 你准备好迎接它了吗?英伟达CEO黄仁勋预言:人形机器人将成为未来主流
杰克尼
机器人人工智能
在近日举行的“CadenceLIVE硅谷2024”大会上,英伟达公司的首席执行官黄仁勋与大会主办方Cadence公司的CEO进行了一场富有深度的对话。在这场引人瞩目的交流中,黄仁勋大胆预测,未来人形机器人将成为主流,引领科技发展的新潮流。你准备好迎接它了吗?英伟达CEO黄仁勋预言:人形机器人将成为未来主流©由18183手游网提供黄仁勋坚信,在不久的将来,我们所有人都都要制造的设备将会是人形机器人。
- 【MALTAB递归预测未来】VMD-Bayes-LSTM单变量时序预测-递归预测未来 (单输入单输出)
前程算法屋
私信获取源码lstm人工智能rnn
VMD-Bayes-LSTM单变量时序预测递归预测未来MALTAB代码一、引言1.1单变量时序预测的背景和意义在当今快速发展的社会中,数据无处不在,而时间序列数据作为其中一种重要类型,在众多领域发挥着不可替代的作用。单变量时序预测,即对单一变量随时间变化趋势的预测,在工业、经济等领域具有极其重要的意义。工业生产是国民经济的支柱产业,其稳定运行对整个社会经济发展至关重要。在制造业中,设备是生产的基础
- Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法
天天酷科研
工艺参数优化matlab神经网络工艺参数优化
Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法一、方法原理与框架BP神经网络的作用BP神经网络通过建立工艺参数与目标性能(如翘曲变形、收缩率、硬度等)之间的非线性映射关系,作为代理模型替代复杂的物理仿真或实验。其优势在于:能够处理多输入-多输出的复杂非线性关系,例如激光功率、扫描速度与熔覆层性能的关联。在注塑成型中,预测体积收缩率和翘曲变形的相对误差可控制在5%以内。通过正交
- 集成学习(Ensemble Learning)基础知识1
代码骑士
#机器学习集成学习机器学习人工智能
文章目录一、集成学习1、基本概念2、回顾:误差的偏差-方差分解3、为什么集成学习有效?4、基学习器:“好而不同”5、集成学习的两个基本问题(1)如何训练出具有差异性的多个基学习器?(2)如何将多个基学习器的预测结果集成为最终的强学习器预测结果?二、自助法(Bagging)1、Bagging2、BootstrapBootstrap采样的数学性质3、Bagging:集成学习的两个基本问题(1)如何训练
- 图像分割技术的应用
不要不开心了
计算机视觉dashpython
今天的内容为:图像分割技术与应用,以下是内容总结1.图像分割概述图像分割是指预测目标的轮廓,将不同的像素划分到不同的类别,属于非常细粒度的分类任务。其应用场景广泛,包括人像抠图、医学组织提取、遥感图像分析、自动驾驶、材料图像分析等。2.图像分割的前景与背景-物体(Things):可数的前景目标,如行人、车辆等。-事物(Stuff):不可数的背景,如天空、草地、路面等。3.图像分割的三层境界-语义分
- 智慧交通是什么,可以帮助我们解决什么问题?
Guheyunyi
运维大数据人工智能信息可视化前端
智慧交通是什么?智慧交通(SmartTransportation)是指利用物联网(IoT)、大数据、人工智能(AI)、云计算、5G通信等先进技术,对交通系统进行智能化管理和优化,以提高交通效率、减少拥堵、降低事故率、提升出行体验,并实现交通资源的合理配置和可持续发展。智慧交通的核心是通过数据采集、分析和应用,实现交通系统的智能化、自动化和协同化,从而构建一个高效、安全、绿色、便捷的交通生态系统。智
- 基于传感器数据的城市空气质量预测与污染源分类
云端.代码农夫CloudFarmer
分类数据挖掘人工智能
项目名称:基于传感器数据的城市空气质量预测与污染源分类创新点:结合时间序列预测(回归)与污染源分类(多标签分类),使用公开API获取实时数据。项目目标预测未来6小时的空气质量指数(AQI)。根据传感器数据判断可能的污染源类型(如工业排放、交通尾气、扬尘等)。数据集来源数据获取:通过开放API实时抓取(如OpenAQ、AirNow或国内公开的城市空气质量平台)。特征示例:PM2.5、PM10、SO2
- 一文搞懂大数据神器Spark,真的太牛了!
qq_23519469
大数据spark分布式
Spark是什么在如今这个大数据时代,数据量呈爆炸式增长,传统的数据处理方式已经难以满足需求。就拿电商平台来说,每天产生的交易数据、用户浏览数据、评论数据等,数量巨大且种类繁多。假如要对这些数据进行分析,比如分析用户的购买行为,找出最受欢迎的商品,预测未来的销售趋势等,用普通的单机处理方式,可能需要花费很长时间,甚至根本无法完成。这时,Spark就应运而生了。Spark是一个开源的、基于内存计算的
- matsim开发教程
若木胡
大数据信息可视化
以下是基于MATSim的二次开发教程指南,结合交通仿真框架的核心功能和开发实践,提供从环境搭建到高级开发的完整路径:一、MATSim简介MATSim(Multi-AgentTransportSimulation)是一个基于Java的开源交通仿真框架,专注于大规模多智能体(Agent)交通行为模拟,支持动态需求建模、路径规划优化、政策评估等应用场景。二、开发环境搭建1.基础依赖JavaJDK11+:
- 并查集实现算法
C嘎嘎嵌入式开发
算法算法服务器c++
畅通工程2题目描述:某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?输入描述:测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N(#include#include#include#includ
- 常见的数学统计模型
若木胡
数学模型
以下是常见的数学统计模型分类及简要说明,适用于数据分析、预测和推断等场景:1.参数模型(ParametricModels)假设数据服从特定分布(如正态分布),通过估计参数来描述数据规律。1.1线性回归模型数学形式:(y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p+\epsilon)应用:预测连续型目标变量(如房价预测)。特点:简单、可解释性强,假
- 做电池寿命预测有福了---2024最新退化数据集,来自cell子刊
优化算法侠Swarm-Opti
深度学习数据集电池寿命预测深度学习人工智能
引言本期介绍2024年最新发表在cell子刊CellReportsPhysicalScience上的电池退化数据集。该数据集是世界上规模最大,最贴近实际运行场景,持续时间最长的电池退化数据集。在实验室和现实生活中对电池退化进行了为期4年的广泛实验调查,考虑了随机充放电电流、频率、深度以及多电池成组、环境温度的影响,涉及数百个电池和电池组的大约546,000次充放电循环。参考文献DongzhenLy
- 金融领域股票价格预测:线性回归原理、实现与应用
ZhShy23
python机器学习入门实战#机器学习#Python学习金融线性回归机器学习
金融领域股票价格预测:线性回归原理、实现与应用一、线性回归原理线性回归是一种用于建立自变量和因变量之间线性关系的统计模型。在股票价格预测中,我们可以将一些可能影响股票价格的因素(如成交量、市场指数等)作为自变量,股票价格作为因变量,通过线性回归模型来建立它们之间的关系。线性回归的基本方程为:[y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_nx_n+\ep
- DeepSeek行业应用案例——教育
未来智慧谷
DeepSeek人工智能大数据AI教育
一、简介在数字化浪潮汹涌澎湃的当下,DeepSeek以其强大的技术实力,如同一股创新的洪流,席卷众多行业,为各领域带来了前所未有的变革与突破。本案例集初步收录了40多个来自农业、制造业、汽车行业、手机行业、智能家居、物流、云服务、办公、网络安全、金融、医疗、教育等多个关键行业的应用案例。从助力农业实现病虫害精准预测与智能灌溉,到推动制造业生产故障预警与产品质量提升;从优化汽车智能交互体验与智能驾驶
- DeepSeek行业应用案例——制造业篇
未来智慧谷
人工智能深度学习大数据自然语言处理
一、简介在数字化浪潮汹涌澎湃的当下,DeepSeek以其强大的技术实力,如同一股创新的洪流,席卷众多行业,为各领域带来了前所未有的变革与突破。本案例集初步收录了40多个来自农业、制造业、汽车行业、手机行业、智能家居、物流、云服务、办公、网络安全、金融、医疗、教育等多个关键行业的应用案例。从助力农业实现病虫害精准预测与智能灌溉,到推动制造业生产故障预警与产品质量提升;从优化汽车智能交互体验与智能驾驶
- Yolov8训练自己的数据集(脱离ultralytics库)
爱吃肉的鹏
YOLO
最近在整理关于yolov8的相关内容,有个很大的问题,抛开yolov8性能不谈,yolov8代码的使用灵活性不如yolov5,尤其是对于一些新手或者对yolo框架不是很熟悉的人(这也是因人而异,有些人可能会喜欢v8代码的使用方式)。比如在使用v8的时候需要安装ultralytics库,然后再调用YOLO进行训练或者预测,那么就有这几个问题:问题1:安装了ultralytics库后如何使用YOLO呢
- Autoformer 架构详细解释及举例说明
six.学长
autoformer人工智能
Autoformer架构详细解释上述图片展示了Autoformer架构的工作流程,包含编码器和解码器的结构。我们来详细解析图中的各个组件及其功能:编码器部分(AutoformerEncoder)输入数据(EncoderInput):输入的是需要预测的时间序列数据。自动相关机制(Auto-Correlation):这个模块通过检测时间序列中的周期性依赖关系,生成相关矩阵(K,Q,V表示键、查询和值)
- 【Hinton论文精读】The Forward-Forward Algorithm: Some Preliminary Investigations-202212
tyhj_sf
论文研读笔记ML理论系列人工智能深度学习FF算法
博文导航0引言1论文摘要2反向传播有什么问题呢?3Forward-Forward算法3.1使用逐层优化函数学习多层表示4Forward-Forward算法的实验4.1反向传播baseline4.2FF算法的一个简单的无监督的例子4.3FF算法的一个简单的监督例子4.4使用FF算法来模拟感知中自上而下的效应4.5作为教师使用空间环境的预测4.6CIFAR-10实验5睡眠6FF算法与其他对比性学习技术
- 基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究
算法如诗
电池建模(RULBC)粒子滤波锂离子电池放电时间预测
基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究一、研究背景与意义锂离子电池作为现代储能系统的核心组件,其放电时间(End-of-DischargeTime,EOD)的准确预测对电池管理系统(BMS)的可靠性和安全性至关重要。传统方法(如安时积分法)易受噪声、温度漂移等因素干扰,而基于状态估计的滤波算法(粒子滤波/PF、卡尔曼滤波/KF)通过动态更新模型参数,能显著提升预测精度。二、
- Python 数据分析实战:电动汽车行业发展态势与市场策略洞察
萧十一郎@
pythonpython数据分析开发语言
目录一、案例背景二、代码实现2.1数据收集与导入2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1市场规模与增长趋势2.4.2消费者需求分析2.4.3企业竞争格局2.4.4政策影响分析2.4.5构建消费者购买意愿预测模型三、主要的代码难点解析3.1数据收集与导入3.2数据清洗-缺失值处理3.3数据清洗-异常值处理3.4数据分析-消费者需求分析3.5数据分析-构建消费者购买意愿预测模型四、可
- 深入探索 PyTorch 在语音识别中的应用
Zoro|
PyTorchDeepLearning机器学习pytorch语音识别人工智能
深入探索PyTorch在语音识别中的应用在本篇博客中,我将分享如何使用PyTorch进行语音识别任务,重点围绕环境配置、数据预处理、特征提取、模型设计以及模型比较展开。本文基于最近一次机器学习作业(HW2)的任务内容,任务目标是对语音信号进行逐帧音素预测,从而完成多类别分类任务。一、介绍任务背景任务目标:利用深度神经网络对语音信号进行逐帧音素预测。音素定义:音素是语音中能够区分单词的最小语音单位。
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 基于MATLAB的遗传算法优化BP神经网络航空发动机寿命预测
默默科研仔
发动机寿命预测matlab神经网络发动机寿命预测
基于MATLAB的遗传算法优化BP神经网络航空发动机寿命预测一、基本原理与优化框架遗传算法(GA)与BP神经网络的结合(GA-BP)主要通过全局搜索优化BP神经网络的初始权值和阈值,解决传统BP易陷入局部最优、收敛速度慢的问题。具体优化形式包括:初始参数优化:GA仅优化初始参数,后续仍依赖BP反向传播微调。全局参数优化:GA直接优化全部网络参数,无需BP参与。混合优化:GA优化初始参数后,再通过B
- 统计机器学习 (Statistical Machine Learning) 原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
统计机器学习(StatisticalMachineLearning)原理与代码实例讲解1.背景介绍统计机器学习是现代人工智能和数据科学的核心领域之一。它结合了统计学和计算机科学的理论与方法,通过数据驱动的方式来构建预测模型和决策系统。统计机器学习不仅在学术研究中占据重要地位,还在工业界有广泛应用,如推荐系统、图像识别、自然语言处理等。2.核心概念与联系2.1统计学与机器学习的关系统计学关注数据的收
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st