正定矩阵的分解

文章目录

  • 正定矩阵的分解方法
  • 相关例题

正定矩阵的分解方法

设三阶正定矩阵 A A A,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1,λ2,λ3,对应的单位化特征向量分别为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3两两正交,则存在正交矩阵 Q = ( α 1 , α 2 , α 3 ) Q = (\alpha_1,\alpha_2,\alpha_3) Q=(α1,α2,α3),使得 Q T A Q = Λ = [ λ 1 λ 2 λ 3 ] Q^{\mathrm{T}}AQ = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} QTAQ=Λ= λ1λ2λ3

现得到 A = Q Λ Q T A = Q \Lambda Q^{\mathrm{T}} A=QΛQT,令 Λ 1 = [ λ 1 λ 2 λ 3 ] \Lambda_1 = \begin{bmatrix} \sqrt{\lambda_1} & & \\ & \sqrt{\lambda_2} & \\ & & \sqrt{\lambda_3} \end{bmatrix} Λ1= λ1 λ2 λ3 ,则正定矩阵 A A A 有以下分解方法:

【方法一】 A = Q Λ Q T = Q ( Λ 1 Λ 1 ) Q T = ( Λ 1 Q T ) T ( Λ 1 Q T ) = C T C (令 C = Λ 1 Q T ) A = Q \Lambda Q^{\mathrm{T}} = Q (\Lambda_1 \Lambda_1) Q^{\mathrm{T}} = (\Lambda_1 Q^{\mathrm{T}})^{\mathrm{T}} (\Lambda_1 Q^{\mathrm{T}}) = C^{\mathrm{T}} C(令 C = \Lambda_1 Q^{\mathrm{T}}) A=QΛQT=Q(Λ1Λ1)QT=(Λ1QT)T(Λ1QT)=CTC(令C=Λ1QT

【方法二】 A = Q Λ Q T = Q Λ 1 Λ 1 Q T = Q Λ 1 ( Q T Q ) Λ 1 Q T = ( Q Λ 1 Q T ) ( Q Λ 1 Q T ) = C 2 (令 C = Q Λ 1 Q T ) A = Q \Lambda Q^{\mathrm{T}} = Q \Lambda_1 \Lambda_1 Q^{\mathrm{T}} = Q \Lambda_1 (Q^{\mathrm{T}} Q) \Lambda_1 Q^{\mathrm{T}} = (Q \Lambda_1 Q^{\mathrm{T}})(Q \Lambda_1 Q^{\mathrm{T}}) = C^2 (令 C = Q \Lambda_1 Q^{\mathrm{T}}) A=QΛQT=QΛ1Λ1QT=QΛ1(QTQ)Λ1QT=(QΛ1QT)(QΛ1QT)=C2(令C=QΛ1QT

此时由谱分解定理得:

  • A = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} A=λ1α1α1T+λ2α2α2T+λ3α3α3T
  • B = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T B = \sqrt{\lambda_1} \alpha_1 \alpha_1^{\mathrm{T}} + \sqrt{\lambda_2} \alpha_2 \alpha_2^{\mathrm{T}} + \sqrt{\lambda_3} \alpha_3 \alpha_3^{\mathrm{T}} B=λ1 α1α1T+λ2 α2α2T+λ3 α3α3T

【拓展】 若要将正定矩阵 A A A 分解为 C 3 C^3 C3,则可令 Λ 2 = [ λ 1 3 λ 2 3 λ 3 3 ] \Lambda_2 = \begin{bmatrix} \sqrt[3]{\lambda_1} & & \\ & \sqrt[3]{\lambda_2} & \\ & & \sqrt[3]{\lambda_3} \end{bmatrix} Λ2= 3λ1 3λ2 3λ3 ,所以有: A = ( Q Λ 2 Q T ) ( Q Λ 2 Q T ) ( Q Λ 2 Q T ) = C 3 (令 C = Q Λ 2 Q T ) A = (Q \Lambda_2 Q^{\mathrm{T}})(Q \Lambda_2 Q^{\mathrm{T}})(Q \Lambda_2 Q^{\mathrm{T}}) = C^3 (令 C = Q \Lambda_2 Q^{\mathrm{T}}) A=(QΛ2QT)(QΛ2QT)(QΛ2QT)=C3(令C=QΛ2QT


相关例题

【例 1】已知矩阵 A = [ 0 0 1 0 1 0 1 0 0 ] A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} A= 001010100 ,求一个可逆矩阵 C C C,使得 C 3 = A C^3 = A C3=A

【解】 C 3 = A C^3 = A C3=A 的特征值为 1 , 1 , − 1 1,1,-1 1,1,1,则 C C C 的特征值为 1 3 , 1 3 , − 1 3 \sqrt[3]{1},\sqrt[3]{1},\sqrt[3]{-1} 31 ,31 ,31 (即 1 , 1 , − 1 1,1,-1 1,1,1),所以 C − E C-E CE 的特征值为 0 , 0 , − 2 0,0,-2 0,0,2

A A A 的特征值 − 1 -1 1 所对应的特征向量为 α 3 = 1 2 ( 1 , 0 , − 1 ) T \alpha_3 = \frac{1}{\sqrt{2}} (1,0,-1)^{\mathrm{T}} α3=2 1(1,0,1)T,则 C − E C-E CE 的特征值 λ 3 = − 2 \lambda_3 = -2 λ3=2 所对应的特征向量也为 α 3 = 1 2 ( 1 , 0 , − 1 ) T \alpha_3 = \frac{1}{\sqrt{2}} (1,0,-1)^{\mathrm{T}} α3=2 1(1,0,1)T

由谱分解定理得

C − E = λ 3 α 3 α 3 T = − 2 ⋅ 1 2 [ 1 0 − 1 ] ⋅ 1 2 ( 1 , 0 , − 1 ) = − [ 1 0 − 1 0 0 0 − 1 0 1 ] = [ − 1 0 1 0 0 0 1 0 − 1 ] ∴ C = ( C − E ) + E = [ 0 0 1 0 1 0 1 0 0 ] \begin{aligned} C-E &= \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} \\ &= -2 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} (1,0,-1) \\ &= -\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} \\ \therefore C &= (C-E) + E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \end{aligned} CEC=λ3α3α3T=22 1 101 2 1(1,0,1)= 101000101 = 101000101 =(CE)+E= 001010100


【例 2】已知矩阵 A = [ 0 0 1 0 1 0 1 0 0 ] A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} A= 001010100 ,求一个正定矩阵 C C C,使得 C 2 = A + 2 E C^2 = A+2E C2=A+2E

【解】 A A A 的特征值为 1 , 1 , − 1 1,1,-1 1,1,1,则 C 2 = A + 2 E C^2 = A+2E C2=A+2E 的特征值为 3 , 3 , 1 3,3,1 3,3,1,则 C C C 的特征值为 3 , 3 , 1 \sqrt{3},\sqrt{3},1 3 ,3 ,1,所以 C − 3 E C-\sqrt{3}E C3 E 的特征值为 0 , 0 , 1 − 3 0,0,1-\sqrt{3} 0,0,13

A A A 的特征值 − 1 -1 1 所对应的特征向量为 α 3 = 1 2 ( 1 , 0 , − 1 ) T \alpha_3 = \frac{1}{\sqrt{2}} (1,0,-1)^{\mathrm{T}} α3=2 1(1,0,1)T,则 C − 3 E C-\sqrt{3}E C3 E 的特征值 λ 3 = 1 − 3 \lambda_3 = 1-\sqrt{3} λ3=13 所对应的特征向量也为 α 3 = 1 2 ( 1 , 0 , − 1 ) T \alpha_3 = \frac{1}{\sqrt{2}} (1,0,-1)^{\mathrm{T}} α3=2 1(1,0,1)T

由谱分解定理得

C − 3 E = λ 3 α 3 α 3 T = ( 1 − 3 ) ⋅ 1 2 [ 1 0 − 1 ] ⋅ 1 2 ( 1 , 0 , − 1 ) = 1 − 3 2 [ 1 0 − 1 0 0 0 − 1 0 1 ] = [ 1 − 3 2 0 3 − 1 2 0 0 0 3 − 1 2 0 1 − 3 2 ] ∴ C = ( C − 3 E ) + 3 E = [ 3 + 1 2 0 3 − 1 2 0 3 0 3 − 1 2 0 3 + 1 2 ] \begin{aligned} C-\sqrt{3}E &= \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} \\ &= (1-\sqrt{3}) \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} (1,0,-1) \\ &= \frac{1-\sqrt{3}}{2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{1-\sqrt{3}}{2} & 0 & \frac{\sqrt{3}-1}{2} \\ 0 & 0 & 0 \\ \frac{\sqrt{3}-1}{2} & 0 & \frac{1-\sqrt{3}}{2} \end{bmatrix} \\ \therefore C &= (C-\sqrt{3}E) + \sqrt{3}E = \begin{bmatrix} \frac{\sqrt{3}+1}{2} & 0 & \frac{\sqrt{3}-1}{2} \\ 0 & \sqrt{3} & 0 \\ \frac{\sqrt{3}-1}{2} & 0 & \frac{\sqrt{3}+1}{2} \end{bmatrix} \end{aligned} C3 EC=λ3α3α3T=(13 )2 1 101 2 1(1,0,1)=213 101000101 = 213 023 100023 10213 =(C3 E)+3 E= 23 +1023 103 023 1023 +1


【例 3】已知矩阵 A = [ 0 0 1 0 1 0 1 0 0 ] A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} A= 001010100 ,求一个正定矩阵 C C C,使得 C n = A + 2 E C^n = A+2E Cn=A+2E

【解】该题与上题的解法是相似的,现直接给出答案:

C = [ 3 n + 1 2 0 3 n − 1 2 0 3 n 0 3 n − 1 2 0 3 n + 1 2 ] C = \begin{bmatrix} \frac{\sqrt[n]{3}+1}{2} & 0 & \frac{\sqrt[n]{3}-1}{2} \\ 0 & \sqrt[n]{3} & 0 \\ \frac{\sqrt[n]{3}-1}{2} & 0 & \frac{\sqrt[n]{3}+1}{2} \end{bmatrix} C= 2n3 +102n3 10n3 02n3 102n3 +1

你可能感兴趣的:(考研数学,线性代数,考研,python,机器学习)