- opencv对图像处理
syfirst1111
图像处理opencv计算机视觉
形态学转换:基于图像形状的操作,通常在二进制图像上执行。腐蚀、膨胀:腐蚀:求局部最小值,原图高亮部分被蚕食膨胀:求局部最大值,原图高亮部分部分扩张img=cv.imread(path)kenel=np.ones((5,5),np.uint8)#创建核结构img2=cv.erode(img,kenel)#腐蚀去噪img1=cv.dilate(img,kenel)#膨胀目标增大,填充孔洞图像平滑(去噪
- OpenCV图像处理基础2
指尖下的技术
OpenCVopencv图像处理计算机视觉
接着上一篇OpenCV图像处理基础1继续说。图像阈值处理1、简单阈值处理ret,thresholded_image=cv2.threshold(image,thresh,maxval,cv2.THRESH_BINARY)thresh是阈值,maxval是最大值。2、自适应阈值处理thresholded_image=cv2.adaptiveThreshold(image,maxval,cv2.ADA
- 使用Dall-E生成图像:文本到图像的魔力
shuoac
计算机视觉人工智能python
使用Dall-E生成图像:文本到图像的魔力技术背景介绍Dall-E是OpenAI开发的一个强大的文本到图像生成模型,它能够根据自然语言描述创造出全新的数字图像。这一技术基于深度学习的方法,使得创意与AI图像生成的结合更具可能性。本文将介绍如何调用Dall-EAPI来生成图像,从而使开发者能够将这一技术应用到自己的项目中。核心原理解析Dall-E利用大型语言模型(LLM)从用户提供的文本描述中提取详
- 【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。
985小水博一枚呀
深度学习人工智能
【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。文章目录【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。1.滑坡灾害早期隐患的概念与特征概念主要特征2.通过光学
- 给普通人看的深度学习说明书:用快递系统理解AI如何思考
嵌入式Jerry
PythonAI人工智能深度学习
第一章:理解AI的思维方式(快递版)1.1快递分拣站的故事假设你管理一个快递分拣站:传统方法:手动制定规则(比如根据邮编分拣)机器学习:观察老员工的分拣记录,总结规律深度学习:搭建自动分拣流水线,自主发现隐藏规则1.2神经网络就像智能分拣机传送带(输入层):接收包裹信息(图片像素/文字等)#就像扫描快递单input_data=[0.2,0.7,0.1]#归一化后的特征数据分拣工人(隐藏层):每个工
- 解析大模型归一化:提升训练稳定性和性能的关键技术
秋声studio
口语化解析深度学习人工智能大模型归一化
引言在深度学习领域,特别是在处理大型神经网络模型时,归一化(Normalization)是一项至关重要的技术。它可以提高模型的训练稳定性和性能,在加速收敛方面发挥了重要作用。本文将深入探讨大模型归一化的原理、常见方法及其应用场景,并结合实际案例和代码示例进行说明。一、归一化的作用与理论基础归一化的主要目的是为了提高模型的训练稳定性和性能。具体来说,归一化有以下几个关键作用:提高训练稳定性:在神经网
- PyTorch数据归一化处理:transforms
2401_87555420
pytorch人工智能python
##1.数据归一化处理:transforms.Normalize###1.1理解torchvision*torchvision.transforms:常用的图像预处理方法*torchvision.datasets:常用的数据集Dataset实现*torchvision.models:常用的CV(预训练)模型实现torchvision.transforms:常用的数据预处理方法,提升泛化能力,包括:
- 力扣hot100:15.轮转数组
star-yp
力扣hot100leetcode算法java日常记录
题目描述第一次:纯暴力复杂度太高:O(N^2),未通过测试classSolution{publicvoidrotate(int[]arr,intk){for(inti=0;i0;j--){arr[j]=arr[j-1];}arr[0]=flag;}}}第二次:反转三次复杂度降低:O(N),通过测试classSolution{publicvoidrotate(int[]arr,intk){if(ar
- 深入解析深度学习中的过拟合与欠拟合诊断、解决与工程实践
古月居GYH
深度学习人工智能
一、引言:模型泛化能力的核心挑战在深度学习模型开发中,欠拟合与过拟合是影响泛化能力的两个核心矛盾。据GoogleBrain研究统计,工业级深度学习项目中有63%的失败案例与这两个问题直接相关。本文将从基础概念到工程实践,系统解析其本质特征、诊断方法及解决方案,并辅以可复现的代码案例。二、核心概念与通熟易懂解释简单而言,欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在
- 初始OpenCV
指尖下的技术
OpenCVopencv人工智能计算机视觉
OpenCV是一个功能强大、应用广泛的计算机视觉库,它为开发人员提供了丰富的工具和算法,可以帮助他们快速构建各种视觉应用。随着计算机视觉技术的不断发展,OpenCV也将会继续发挥重要的作用。OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及机器学习领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。首先介绍一下OpenCV
- Umi-OCR 实践教程:离线、免费、高效的图像文字识别工具
几道之旅
人工智能智能体及数字员工ocr人工智能
一、工具简介Umi-OCR是一款开源、免费且支持离线运行的OCR(光学字符识别)工具,适用于Windows和Linux系统。它基于深度学习技术,能够高效提取图像中的文字,支持多语言识别、批量处理、截屏识别等功能,尤其适合对隐私敏感或网络受限的场景。核心亮点:离线运行:无需联网,保护隐私。多引擎支持:提供Paddle(高性能)和Rapid(低配兼容)两种引擎。批量处理:支持图片、PDF、电子书等多格
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- anythingLLM 使用教程
惟贤箬溪
穷玩AiAIGC人工智能
一、anythingLLM简介anythingLLM是一款灵活且功能强大的语言模型,它基于先进的深度学习架构构建,旨在为用户提供多样化的自然语言处理服务。其设计理念注重通用性和可扩展性,能够适应多种领域和任务,无论是文本生成、智能问答,还是翻译、摘要提取等,都能展现出出色的性能。与同类模型相比,anythingLLM具有训练数据丰富、模型优化程度高的优势,能够生成更符合逻辑、更具实用性的文本内容。
- 深度解析大模型推理框架:原理、应用与实践
百度_开发者中心
人工智能大模型自然语言处理
在当今数据驱动的时代,大模型推理框架已经成为人工智能领域的重要支柱。本文将通过简明扼要、清晰易懂的方式,带领读者深入了解大模型推理框架的原理、应用领域和实践经验,帮助读者更好地掌握这一技术,并在实际工作中发挥其价值。一、大模型推理框架简介大模型推理框架是指一种基于深度学习技术的推理框架,主要用于解决大规模数据集下的复杂问题。该框架通过对海量数据进行高效的训练和推理,能够快速地对各种复杂场景进行分析
- 大模型推理框架:从理论到实践的全面解析
百度_开发者中心
人工智能大模型自然语言处理
在数据驱动的时代,深度学习技术已经渗透到各个行业,从图像识别到自然语言处理,从推荐系统到智能客服,其应用无处不在。然而,深度学习模型的训练和推理过程往往涉及大量数据和复杂计算,传统的计算框架难以满足需求。因此,大模型推理框架应运而生,成为解决这一问题的关键。一、大模型推理框架基本概念大模型推理框架是一种基于深度学习技术的推理框架,它通过对海量数据进行高效的训练和推理,能够快速地对各种复杂场景进行分
- GStreamer —— 3.2、Qt+GStreamer+OpenCV制作图像处理播放器(对每帧图像处理),支持本地mp4文件、rtsp流、usb摄像头等(可跨平台,附源码)
信必诺
GStreamerQtGStreamerQt
运行效果 介绍 本项目是一个结合了Qt、GStreamer和OpenCV的跨平台图像处理播放器项目。该
- 人脸识别的一些代码
饿了就干饭
CV相关人脸识别
1、cv2入门函数imread及其相关操作2、(详解)opencv里的cv2.resize改变图片大小Python3、机器学习之人脸识别face_recognition使用4、使用face_recognition进行人脸校准5、简单的人脸识别通用流程示意图(这个看着写的挺好的)6、face_recognition和图像处理中left、top、right、bottom解释7、使用pillow库对图片
- Java基础 3.22
anlogic
javajava开发语言jvm
1.break练习//1-100之内的数求和,求当和第一次大于20的当前数ipublicclassBreak01{publicstaticvoidmain(String[]args){intn=0;intcount=0;for(inti=1;i20){n=i;System.out.println("和大于20,退出循环,当前i为"+n);break;}}}}//实现登录验证,有3次机会,如果用户名
- 《java面向对象(5)》<不含基本语法>
java小白板
java开发语言
本笔记基于黑马程序员java教程整理,仅供参考1.异常1.1异常分类1.1.1Error指系统级别的错误,程序员无法解决,不必理会1.1.2Exception(异常)分为两类:RuntimeException:运行时异常,编译时程序不会报错,运行时报错,如数组越界其他异常:编译时异常,编译时就会报错运行时异常:publicclassText{publicstaticvoidmain(String[
- 存储系统怎么选?分布式存储vs.集中式存储的区别在哪?
东方念
分布式
在当今的数字化时代,安防监控已成为维护社会秩序和公共安全的重要手段。随着监控设备的普及和监控数据的不断增加,如何高效、安全地存储和管理这些视频数据,成为了安防行业面临的重要挑战。EasyCVR视频存储系统凭借其卓越的性能和灵活的架构,为安防行业提供了一个理想的解决方案。一、EasyCVR视频监控存核心优势EasyCVR视频汇聚平台是一个具备高度集成化、智能化的视频监控汇聚管理平台,拥有远程视频监控
- Android Google Pay接入
2401_87017192
androidwindows
//TheBillingClientisready.Youcanquerypurchaseshere.}}@OverridepublicvoidonBillingServiceDisconnected(){//Trytorestarttheconnectiononthenextrequestto//GooglePlaybycallingthestartConnection()method.}});
- 在WPF中把Canvas保存为图片,文本文件,xps文件
Anticlimax丶
WPFCanvas转图片Canvas转文本文件Canvas转xps文件
由于wpf的UI使用xaml来表达的,所以我们们可利用这个优点,把WPF中的xaml元素另存为各样的文件,在很多时候我们都不须要这样的操作。把xaml保存为图片、字符串、XPS等等。这里我写了一些方法,以供大家参考.。注意:以下保存操作前,一定要确保参数中的canvas有高和宽。1.把canvas保存为文本文件usingSystem.IO;publicvoidExport(Uripath,Canv
- 【人工智能】大模型的幻觉问题:DeepSeek 的解决策略与实践
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界大语言模型(LLM)的“幻觉”问题,即模型生成与事实不符或脱离上下文的内容,是限制其广泛应用的关键挑战之一。本文深入探讨了幻觉问题的成因,包括训练数据的偏差、推理过程中的过度泛化以及缺乏外部验证机制。以DeepSeek系列模型为研究对象,我们分析了其在解
- Yolo系列之Yolo的基本理解
是十一月末
YOLOpython开发语言yolo
YOLO的基本理解目录YOLO的基本理解1YOLO1.1概念1.2算法2单、多阶段对比2.1FLOPs和FPS2.2one-stage单阶段2.3two-stage两阶段1YOLO1.1概念YOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位
- springboot自定义工具
johnrui
springbootjavaspring
springboot自定义工具上下文工具类上下文工具类你上下文工具类,获取注册的bean。publicclassSpringContextUtilsimplementsApplicationListener{protectedstaticApplicationContextcontext;@OverridepublicvoidonApplicationEvent(ApplicationPrepar
- AI时代个人财富增长实战指南:从零基础到精通变现的完整路径
A达峰绮
人工智能
(本文基于人工智能技术发展规律,结合互联网经济底层逻辑,为普通从业者构建系统性AI应用框架)一、建立AI认知基础:技术理解与工具掌握技术分类认知人工智能工具分为四大功能模块:自然语言处理(文本生成、对话交互)、计算机视觉(图像视频处理)、数据分析(预测建模)、自动化控制(流程优化)。建议新手首先掌握语言类工具的基础操作,逐步扩展到其他领域。工具操作逻辑通用AI工具通常包含三大核心功能模块:输入界面
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...如何解决多尺度问题?
努力毕业的小土博^_^
AI算法题库人工智能算法计算机视觉深度学习神经网络
【北上广深杭大厂AI算法面试题】计算机视觉篇…如何解决多尺度问题?【北上广深杭大厂AI算法面试题】计算机视觉篇…如何解决多尺度问题?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...如何解决多尺度问题?前言数据级别的多尺度模型架构上的多尺度表示FPN代码示例(PyTorch)说明其他多尺度处理方法总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校
- 大语言模型学习路线:从入门到实战
大模型官方资料
语言模型学习人工智能产品经理自然语言处理搜索引擎
大语言模型学习路线:从入门到实战在人工智能领域,大语言模型(LargeLanguageModels,LLMs)正迅速成为一个热点话题。本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。适应人群已掌握Python基础具备基本的深度学习知识学习步骤本路线将通过四个核
- 深度学习与目标检测系列(六) 本文约(4.5万字) | 全面解读复现ResNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorch人工智能ResNet残差连接残差网络
文章目录解读Abstract—摘要翻译精读主要内容Introduction—介绍翻译精读背景RelatedWork—相关工作ResidualRepresentations—残差表达翻译精读主要内容ShortcutConnections—短路连接翻译精读主要内容DeepResidualLearning—深度残差学习ResidualLearning—残差学习翻译精读ResNet目的以前方法本文改进本质
- 深度学习与目标检测系列(三) 本文约(4万字) | 全面解读复现AlexNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorchAlexNet人工智能
文章目录解读Abstract-摘要翻译精读主要内容1.Introduction—前言翻译精读主要内容:本文主要贡献:2.TheDataset-数据集翻译精读主要内容:ImageNet简介:图像处理方法:3.TheArchitecture—网络结构3.1ReLUNonlinearity—非线性激活函数ReLU翻译精读传统方法及不足本文改进方法本文的改进结果3.2TrainingonMultipleG
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p