hive HQL

set hive.cli.print.header=true;

CREATE TABLE page_view(viewTime INT, userid BIGINT,
     page_url STRING, referrer_url STRING,
     ip STRING COMMENT 'IP Address of the User')
 COMMENT 'This is the page view table'
 PARTITIONED BY(dt STRING, country STRING)
 ROW FORMAT DELIMITED
   FIELDS TERMINATED BY '\001'
STORED AS SEQUENCEFILE;   TEXTFILE

//sequencefile
create table tab_ip_seq(id int,name string,ip string,country string) 
    row format delimited
    fields terminated by ','
    stored as sequencefile;
insert overwrite table tab_ip_seq select * from tab_ext;


//create & load
create table tab_ip(id int,name string,ip string,country string) 
    row format delimited
    fields terminated by ','
    stored as textfile;
load data local inpath '/home/hadoop/ip.txt' into table tab_ext;

//external
CREATE EXTERNAL TABLE tab_ip_ext(id int, name string,
     ip STRING,
     country STRING)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 LOCATION '/external/hive';
 

// CTAS  用于创建一些临时表存储中间结果
CREATE TABLE tab_ip_ctas
   AS
SELECT id new_id, name new_name, ip new_ip,country new_country
FROM tab_ip_ext
SORT BY new_id;


//insert from select   用于向临时表中追加中间结果数据
create table tab_ip_like like tab_ip;

insert overwrite table tab_ip_like
    select * from tab_ip;

//CLUSTER <--相对高级一点,你可以放在有精力的时候才去学习>
create table tab_ip_cluster(id int,name string,ip string,country string)
clustered by(id) into 3 buckets;

load data local inpath '/home/hadoop/ip.txt' overwrite into table tab_ip_cluster;
set hive.enforce.bucketing=true;
insert into table tab_ip_cluster select * from tab_ip;

select * from tab_ip_cluster tablesample(bucket 2 out of 3 on id); 

//PARTITION
create table tab_ip_part(id int,name string,ip string,country string) 
    partitioned by (part_flag string)
    row format delimited fields terminated by ',';
    
load data local inpath '/home/hadoop/ip.txt' overwrite into table tab_ip_part
     partition(part_flag='part1');
    
    
load data local inpath '/home/hadoop/ip_part2.txt' overwrite into table tab_ip_part
     partition(part_flag='part2');

select * from tab_ip_part;

select * from tab_ip_part  where part_flag='part2';
select count(*) from tab_ip_part  where part_flag='part2';


alter table tab_ip change id id_alter string;
ALTER TABLE tab_cts ADD PARTITION (partCol = 'dt') location '/external/hive/dt';

show partitions tab_ip_part;


   
//write to hdfs
insert overwrite local directory '/home/hadoop/hivetemp/test.txt' select * from tab_ip_part where part_flag='part1';    
insert overwrite directory '/hiveout.txt' select * from tab_ip_part where part_flag='part1';

//array 
create table tab_array(a array,b array)
row format delimited
fields terminated by '\t'
collection items terminated by ',';

示例数据
tobenbrone,laihama,woshishui     13866987898,13287654321
abc,iloveyou,itcast     13866987898,13287654321


select a[0] from tab_array;
select * from tab_array where array_contains(b,'word');
insert into table tab_array select array(0),array(name,ip) from tab_ext t; 

//map
create table tab_map(name string,info map)
row format delimited
fields terminated by '\t'
collection items terminated by ';'
map keys terminated by ':';

示例数据:
fengjie            age:18;size:36A;addr:usa
furong        age:28;size:39C;addr:beijing;weight:180KG


load data local inpath '/home/hadoop/hivetemp/tab_map.txt' overwrite into table tab_map;
insert into table tab_map select name,map('name',name,'ip',ip) from tab_ext; 

//struct
create table tab_struct(name string,info struct)
row format delimited
fields terminated by '\t'
collection items terminated by ','

load data local inpath '/home/hadoop/hivetemp/tab_st.txt' overwrite into table tab_struct;
insert into table tab_struct select name,named_struct('age',id,'tel',name,'addr',country) from tab_ext;


//cli shell
hive -S -e 'select country,count(*) from tab_ext' > /home/hadoop/hivetemp/e.txt  
有了这种执行机制,就使得我们可以利用脚本语言(bash shell,python)进行hql语句的批量执行


select * from tab_ext sort by id desc limit 5;

select a.ip,b.book from tab_ext a join tab_ip_book b on(a.name=b.name);


//UDF
0.要继承org.apache.hadoop.hive.ql.exec.UDF类实现evaluate

自定义函数调用过程:
1.添加jar包(在hive命令行里面执行)
hive> add jar /root/NUDF.jar;

2.创建临时函数
hive> create temporary function getNation as 'cn.itcast.hive.udf.NationUDF';

3.调用
hive> select id, name, getNation(nation) from beauty;

4.将查询结果保存到HDFS中
hive> create table result row format delimited fields terminated by '\t' as select * from beauty order by id desc;    
hive> select id, getAreaName(id) as name from tel_rec;
hive>create table result row format delimited fields terminated by '\t' as select id, getNation(nation) from beauties;
hive>select if(id=1,first,no-first),name from tab_ext;
hive>add jar /home/hadoop/myudf.jar;
hive>CREATE TEMPORARY FUNCTION my_lower AS 'org.dht.Lower';
hive>select my_upper(name) from tab_ext;  


 

你可能感兴趣的:(大数据,hadoop,hive,hql)