注意:Table API 和 SQL 现在还处于活跃开发阶段,还没有完全实现Flink中所有的特性。不是所有的 [Table API,SQL] 和 [流,批] 的组合都是支持的。
Table API和SQL的由来:
Flink针对标准的流处理和批处理提供了两种关系型API,Table API和SQL。Table API允许用户以一种很直观的方式进行select 、filter和join操作。Flink SQL基于 Apache Calcite实现标准SQL。针对批处理和流处理可以提供相同的处理语义和结果。
Flink Table API、SQL和Flink的DataStream API、DataSet API是紧密联系在一起的。
Table API和SQL是一种关系型 API,用户可以像操作 Mysql 数据库表一样的操作数据,而不需要写代码,更不需要手工的对代码进行调优。另外,SQL 作为一个非程序员可操作的语言,学习成本很低,如果一个系统提供 SQL 支持,将很容易被用户受。
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-api-java-bridge_2.12artifactId>
<version>1.11.0version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-api-scala-bridge_2.12artifactId>
<version>1.11.0version>
<scope>providedscope>
dependency>
如果你想在 本地 IDE中运行程序,还需要添加下面的依赖
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-planner-blink_2.12artifactId>
<version>1.11.0version>
<scope>providedscope>
dependency>
注意:由于部分 table 相关的代码是用 Scala 实现的,所以,这个依赖也是必须的。【这个依赖我们在前面开发DataStream程序的时候已经添加过了】
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-streaming-scala_2.12artifactId>
<version>1.11.0version>
<scope>providedscope>
dependency>
Table API和SQL通过join API集成在一起,这个join API的核心概念是Table,Table可以作为查询的输入和输出。
针对Table API和SQL我们主要学习以下内容
1:Table API和SQL的使用
2:DataStream、DataSet和Table之间的互相转换
想要使用Table API 和SQL,首先要创建一个TableEnvironment对象。
下面我们来创建一个TableEnvironment对象
/**
* 创建TableEnvironment对象
* Created by xuwei
*/
object CreateTableEnvironmentScala {
def main(args: Array[String]): Unit = {
/**
* 注意:如果Table API和SQL不需要和DataStream或者DataSet互相转换
* 则针对stream和batch都可以使用TableEnvironment
*/
//指定底层使用Blink引擎,以及数据处理模式-stream
//从1.11版本开始,Blink引擎成为Table API和SQL的默认执行引擎,在生产环境下面,推
val sSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStr
//创建TableEnvironment对象
val sTableEnv = TableEnvironment.create(sSettings)
//指定底层使用Blink引擎,以及数据处理模式-batch
val bSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inBat
//创建TableEnvironment对象
val bTableEnv = TableEnvironment.create(bSettings)
/*
* 注意:如果Table API和SQL需要和DataStream或者DataSet互相转换
* 针对stream需要使用StreamTableEnvironment
* 针对batch需要使用BatchTableEnvironment
*/
//创建StreamTableEnvironment
val ssEnv = StreamExecutionEnvironment.getExecutionEnvironment
val ssSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inSt
val ssTableEnv = StreamTableEnvironment.create(ssEnv, ssSettings)
//创建BatchTableEnvironment
//注意:此时只能使用旧的执行引擎,新的Blink执行引擎不支持和DataSet转换
val bbEnv = ExecutionEnvironment.getExecutionEnvironment
val bbTableEnv = BatchTableEnvironment.create(bbEnv)
}
}
目前创建Table的很多方法都过时了,都不推荐使用了,例如:registerTableSource、connect等方法
目 前 官 方 推 荐 使 用 executeSql 的 方 式 , executeSql 里 面 支 持DDL/DML/DQL/SHOW/DESCRIBE/EXPLAIN/USE等语法
演示:
object TableAPIAndSQLOpScala {
def main(args: Array[String]): Unit = {
//获取TableEnvironment
val sSettings = EnvironmentSettings.newInstance.useBlinkPlanner.inStreami
val sTableEnv = TableEnvironment.create(sSettings)
//创建输入表
/**
* connector.type:指定connector的类型
* connector.path:指定文件或者目录地址
* format.type:文件数据格式化类型,现在只支持csv格式
* 注意:SQL语句如果出现了换行,行的末尾可以添加空格或者\n都可以,最后一行不用添
*/
sTableEnv.executeSql("" +
"create table myTable(\n" +
"id int,\n" +
"name string\n" +
") with (\n" +
"'connector.type' = 'filesystem',\n" +
"'connector.path' = 'D:\\data\\source',\n" +
"'format.type' = 'csv'\n" +
")")
//使用Table API实现数据查询和过滤等操作
import org.apache.flink.table.api._
val result = sTableEnv.from("myTable")
.select($"id",$"name")
.filter($"id" > 1)*/
//使用SQL实现数据查询和过滤等操作
val result = sTableEnv.sqlQuery("select id,name from myTable where id > 1
//输出结果到控制台
result.execute.print()
}
}
注意:针对SQL建表语句的写法还有一种比较清晰的写法
sTableEnv.executeSql(
"""
|create table myTable(
|id int,
|name string
|) with (
|'connector.type' = 'filesystem',
|'connector.path' = 'D:\data\source',
|'format.type' = 'csv'
|)
|""".stripMargin)
Table API和SQL可以很容易的和DataStream和DataSet程序集成到一块。通过TableEnvironment ,可以 把 DataStream 或 者 DataSet 注 册 为 Table , 这 样 就 可 以 使 用 Table API 和 SQL 查 询 了 。 通 过TableEnvironment 也可以把Table对象转换为DataStream或者DataSet,这样就可以使用DataStream
或者DataSet中的相关API了。
主要包含下面这两种情况
/**
* 将DataStream转换成表
*/
object DataStreamToTableScala {
def main(args: Array[String]): Unit = {
//获取StreamTableEnvironment
val ssEnv = StreamExecutionEnvironment.getExecutionEnvironment
val ssSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build()
val ssTableEnv = StreamTableEnvironment.create(ssEnv, ssSettings)
//获取DataStream
import org.apache.flink.api.scala._
val stream = ssEnv.fromCollection(Array((1, "jack"), (2, "tom"), (3, "mac")))
//第一种:将DataStream转换为view视图
ssTableEnv.createTemporaryView("myTable",stream,"id,name")
ssTableEnv.sqlQuery("select * from myTable where id > 1").execute().print()
//第二种:将DataStream转换为table对象
val table = ssTableEnv.fromDataStream(stream, $"id", $"name")
table.select($"id",$"name")
.filter($"id" > 1)
.execute()
.print()
//注意:'id,'name 和 $"id", $"name" 这两种写法是一样的效果
}
}
object DataSetToTableScala {
def main(args: Array[String]): Unit = {
//获取BatchTableEnvironment
val bbEnv = ExecutionEnvironment.getExecutionEnvironment
val bbTableEnv = BatchTableEnvironment.create(bbEnv)
//获取DataSet
import org.apache.flink.api.scala._
val set = bbEnv.fromCollection(Array((1, "jack"), (2, "tom"), (3, "mack")
//第一种:将DataSet转换为view视图
import org.apache.flink.table.api._
bbTableEnv.createTemporaryView("myTable",set,'id,'name)
bbTableEnv.sqlQuery("select * from myTable where id > 1").execute().print
//第二种:将DataSet转换为table对象
val table = bbTableEnv.fromDataSet(set, $"id", $"name")
table.select($"id",$"name")
.filter($"id" > 1)
.execute()
.print()
//注意:'id,'name 和 $"id", $"name" 这两种写法是一样的效果
}
}
将 Table 转换为 DataStream 或者 DataSet 时,你需要指定生成的 DataStream 或者 DataSet 的数据类型,即,Table 的每行数据要转换成的数据类型。通常最方便的选择是转换成 Row 。以下列表概述了不同选项的功能:
流式查询的结果Table会被动态地更新,即每个新的记录到达输入流时结果就会发生变化。因此,转换此动态查询DataStream需要对表的更新进行编码。
有几种模式可以将Table转换为DataStream。
/**
* 将table转换成 DataStream
*/
object TableToDataStreamScala {
def main(args: Array[String]): Unit = {
//获取StreamTableEnvironment
val ssEnv = StreamExecutionEnvironment.getExecutionEnvironment
val ssSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inSt
val ssTableEnv = StreamTableEnvironment.create(ssEnv, ssSettings)
//创建输入表
ssTableEnv.executeSql("" +
"create table myTable(\n" +
"id int,\n" +
"name string\n" +
") with (\n" +
"'connector.type' = 'filesystem',\n" +
"'connector.path' = 'D:\\data\\source',\n" +
"'format.type' = 'csv'\n" +
")")
//获取table
val table = ssTableEnv.from("myTable")
//将table转换为DataStream
//如果只有新增(追加)操作,可以使用toAppendStream
import org.apache.flink.api.scala._
val appStream = ssTableEnv.toAppendStream[Row](table)
appStream.map(row=>(row.getField(0).toString.toInt,row.getField(1).toStri
.print()
//如果有增加操作,还有删除操作,则使用toRetractStream
val retStream = ssTableEnv.toRetractStream[Row](table)
retStream.map(tup=>{
val flag = tup._1
val row = tup._2
val id = row.getField(0).toString.toInt
val name = row.getField(1).toString
(flag,id,name)
}).print()
//注意:将table对象转换为DataStream之后,就需要调用StreamExecutionEnvironment
ssEnv.execute("TableToDataStreamScala")
}
}
object TableToDataSetScala {
def main(args: Array[String]): Unit = {
//获取BatchTableEnvironment
val bbEnv = ExecutionEnvironment.getExecutionEnvironment
val bbTableEnv = BatchTableEnvironment.create(bbEnv)
//创建输入表
bbTableEnv.executeSql("" +
"create table myTable(\n" +
"id int,\n" +
"name string\n" +
") with (\n" +
"'connector.type' = 'filesystem',\n" +
"'connector.path' = 'D:\\data\\source',\n" +
"'format.type' = 'csv'\n" +
")")
//获取table
val table = bbTableEnv.from("myTable")
//将table转换为DataSet
import org.apache.flink.api.scala._
val set = bbTableEnv.toDataSet[Row](table)
set.map(row=>(row.getField(0).toString.toInt,row.getField(1).toString))
.print()
}
}