- 博主简介:努力学习的大一在校计算机专业学生,热爱学习和创作。目前在学习和分享:算法、数据结构、Java等相关知识。
- 博主主页: @是瑶瑶子啦
- 所属专栏: 算法 ;该专栏专注于蓝桥杯和ACM等算法竞赛
- 近期目标:写好专栏的每一篇文章
前天,我们学习了Dijkstra算法:【最短路算法】一篇文章彻底弄懂Dijkstra算法|多图解+代码详解
Dijstra算法用于计算单源、正权边的最短路问题
今天学习的贝尔曼福特算法,是用于计算单源,且可含负权边的最短路问题
与迪杰斯特拉算法的区别:
迪杰斯特拉算法是借助贪心思想,每次选取一个未处理的最近的结点,去对与他相连接的边进行松弛操作;贝尔曼福特算法是直接对所有边进行N-1遍松弛操作。
迪杰斯特拉算法要求边的权值不能是负数;贝尔曼福特算法边的权值可以为负数,并可检测负权回路。
名词解释:
1. 松弛操作:不断更新最短路径和前驱结点的操作。
2. 负权回路:绕一圈绕回来发现到自己的距离从0变成了负数,到各结点的距离无限制的降低,停不下来
思路
初始化源点s到各个点v的路径dis[v] = ∞,dis[s] = 0。
进行n - 1次遍历,每次遍历对所有边进行松弛操作,满足则将权值更新。
松弛操作:以a为起点,b为终点,ab边长度为w为例。dis[a]代表源点s到a点的路径长度,dis[b]代表源点s到b点的路径长度。如果满足下面的式子则将dis[b]更新为dis[a] + w。
dis[b] > dis[a] + w
遍历都结束后,若再进行一次遍历,还能得到s到某些节点更短的路径的话,则说明存在负环路。
算法模板
int n, m; // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离
struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];
// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
for (int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
if (dist[b] > dist[a] + w)
dist[b] = dist[a] + w;
}
}
if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];
}
Bellman-ford算法的思路也很简单,直接就是两层循环,内层循环所有边,外层循环就是循环所有边的次数,这个外层循环次数一般是题目控制的。时间复杂度是O(n*m)
注意点
dist[b]<=dist[a]+w
,这个叫”三角不等式”核心思想: 松弛操作
松弛法(relaxation)是一数学术语,描述的是一些求解方法,这些方法会通过逐步接近的方式获得相关问题的最佳解法。每运用一次松弛法就好像我们“移动”了一次,而我们要做的就是在尽可能少的移动次数内找到最佳解决方案。
首先,Bellman算法的核心是松驰,和Dijsktra算法不一样,Djikstra算法是松驰+贪心(,其实质就是在问相应边对面的顶点————“你能够被改进(更短)吗?”)
最短路算法的本质,都是在研究 松驰的顺序!通过不断的松驰,最终求得每个顶点的最短路
串联问题一般发生在求解有边数限制的最短路问题中(下面有例题),这里我们主要讲一下原理和解决办法
其实理解了上面的过程,串联也好解释。因为在遍历的过程中,虽然说第二层的节点的dist可能任然为初始化的正无穷,但是由于第一层的更新和第二层的更新是同时的,很有可能更新完某个第一层节点,恰好后面去更新与它相连的第二层节点,那么该第二层节点的dist由于第一层节点的更新也更新了(如果该第二层节点同时也是处于第一层位置),看下面例子
防止串联,其实就是防止在第k次循环,更新k+1层节点时,由于k+1层节点的更新和确定,以k+1更新后的结果为基础松驰了与之相连的下一层的某个节点。!
可以发现,如果我们没有备份上一次的dist数组的话,限制从1出发不超过1条边到3最短距离本应该是3,但变成了2。内层循环只迭代了一次,但是在更新的过程中会发生”串联”
为什么是发生呢?我们来分析一下
假设每次迭代,遍历所有边,遍历边的顺序如下:
1→2, 1→3, 2→3
遍历完第一条边dist[2] = 1,遍历完第二条边dist[3] = 3,遍历第三条边,由于1→2的dist已经确定,在掌握这个信息的前提下,发生串联,dist[3]可以直接松驰,更新为dist[3] = 2,但这不是我们想要的答案。我们想要的是:迭代k次,得到从源点出发,不超过k条边的最短路。
怎么保证不发生串联呢?我们保证更新的时候只用上一次循环的结果就行。所以我们先备份一下。备份之后backup数组存的就是上一次循环的结果,我们用上一次循环的结果来更新距离。所以我们这样写dist[b]=min(dist[b],backup[a]+w)
来更新距离,而不是dist[b]=min(dist[b],dist[a]+w)
,这样写就会发生上面说的”串联”现象。
假如我们现在是第k次迭代,那么backup保留的是第k-1次迭代后获得的信息。
在这个例子中,backup保留的是没有迭代之前(比如站在3的视角,它不会知道1→2的距离,即使1→2的距离在2→3之前更新,这样就不会因为1→2dist的确定,而串联确定2→3)
bellman-ford算法虽然时间复杂度比较高,但它独特的性质(本质上还是松驰顺序),使它非常适合做:有限制边数的最短路。因为上面已经讲到,它的迭代次数是有意义的,第k次迭代,在防止串联的情况下,代表从源点出发,经过不超过k条边,所经过的顶点距离源点的最短距离被百分之百确定好了。
AcWing 853. 有边数限制的最短路
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible
。
注意:图中可能 存在负权回路 。
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
点的编号为 1∼n。
输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。
如果不存在满足条件的路径,则输出 impossible
。
1≤n,k≤500,
1≤m≤10000,
1≤x,y≤n,
任意边长的绝对值不超过 10000。
3 3 1
1 2 1
2 3 1
1 3 3
3
详细注释题解
#include
#include
#include
using namespace std;
const int N = 510, M = 10010;//最大点数和边数
int n,m,k;//实际点数和边数
int dist[N],last[N];//备份数组,作用是防止串联
struct Edge{
int a,b,w;//存a->b权重是w的边
}edges[M];//结构体数组,用来存边
void bellman_ford(){
memset(dist,0x3f,sizeof(dist));//初始化dist数组
dist[1] = 0;
for(int i = 0; i < k; i ++){
memcpy(last, dist, sizeof(dist));//备份数组,备份上次迭代的dist数组
for (int j = 0; j < m; j++){//遍历所有边
auto e = edges[j];
dist[e.b] = min(dist[e.b],last[e.a] + e.w);//松驰操作
}
}
}
int main(){
scanf("%d%d%d",&n,&m,&k);//n个顶点,m条边,k是限制边数
for(int i = 0; i < m; i++){
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
edges[i] = {a,b,w};
}
bellman_ford();
if(dist[n] > 0x3f3f3f3f / 2) puts("impossible");
else printf("%d\n",dist[n]);
return 0;
}