kruskl算法c语言邻接矩阵,PHP实现图的邻接矩阵表示及几种简单遍历算法分析

本文实例讲述了PHP实现图的邻接矩阵表示及几种简单遍历算法。分享给大家供大家参考,具体如下:

在web开发中图这种数据结构的应用比树要少很多,但在一些业务中也常有出现,下面介绍几种图的寻径算法,并用PHP加以实现.

佛洛依德算法,主要是在顶点集内,按点与点相邻边的权重做遍历,如果两点不相连则权重无穷大,这样通过多次遍历可以得到点到点的最短路径,逻辑上最好理解,实现也较为简单,时间复杂度为O(n^3);

迪杰斯特拉算法,OSPF中实现最短路由所用到的经典算法,djisktra算法的本质是贪心算法,不断的遍历扩充顶点路径集合S,一旦发现更短的点到点路径就替换S中原有的最短路径,完成所有遍历后S便是所有顶点的最短路径集合了.迪杰斯特拉算法的时间复杂度为O(n^2);

克鲁斯卡尔算法,在图内构造最小生成树,达到图中所有顶点联通.从而得到最短路径.时间复杂度为O(N*logN);

vexs = $vexs;

$this->arcData = $arc;

$this->direct = $direct;

$this->initalizeArc();

$this->createArc();

}

private function initalizeArc(){

foreach($this->vexs as $value){

foreach($this->vexs as $cValue){

$this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);

}

}

}

//创建图 $direct:0表示无向图,1表示有向图

private function createArc(){

foreach($this->arcData as $key=>$value){

$strArr = str_split($key);

$first = $strArr[0];

$last = $strArr[1];

$this->arc[$first][$last] = $value;

if(!$this->direct){

$this->arc[$last][$first] = $value;

}

}

}

//floyd算法

public function floyd(){

$path = array();//路径数组

$distance = array();//距离数组

foreach($this->arc as $key=>$value){

foreach($value as $k=>$v){

$path[$key][$k] = $k;

$distance[$key][$k] = $v;

}

}

for($j = 0; $j < count($this->vexs); $j ++){

for($i = 0; $i < count($this->vexs); $i ++){

for($k = 0; $k < count($this->vexs); $k ++){

if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){

$path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];

$distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];

}

}

}

}

return array($path, $distance);

}

//djikstra算法

public function dijkstra(){

$final = array();

$pre = array();//要查找的结点的前一个结点数组

$weight = array();//权值和数组

foreach($this->arc[$this->vexs[0]] as $k=>$v){

$final[$k] = 0;

$pre[$k] = $this->vexs[0];

$weight[$k] = $v;

}

$final[$this->vexs[0]] = 1;

for($i = 0; $i < count($this->vexs); $i ++){

$key = 0;

$min = $this->infinity;

for($j = 1; $j < count($this->vexs); $j ++){

$temp = $this->vexs[$j];

if($final[$temp] != 1 && $weight[$temp] < $min){

$key = $temp;

$min = $weight[$temp];

}

}

$final[$key] = 1;

for($j = 0; $j < count($this->vexs); $j ++){

$temp = $this->vexs[$j];

if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){

$pre[$temp] = $key;

$weight[$temp] = $min + $this->arc[$key][$temp];

}

}

}

return $pre;

}

//kruscal算法

private function kruscal(){

$this->krus = array();

foreach($this->vexs as $value){

$krus[$value] = 0;

}

foreach($this->arc as $key=>$value){

$begin = $this->findRoot($key);

foreach($value as $k=>$v){

$end = $this->findRoot($k);

if($begin != $end){

$this->krus[$begin] = $end;

}

}

}

}

//查找子树的尾结点

private function findRoot($node){

while($this->krus[$node] > 0){

$node = $this->krus[$node];

}

return $node;

}

//prim算法,生成最小生成树

public function prim(){

$this->primVexs = array();

$this->primArc = array($this->vexs[0]=>0);

for($i = 1; $i < count($this->vexs); $i ++){

$this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];

$this->primVexs[$this->vexs[$i]] = $this->vexs[0];

}

for($i = 0; $i < count($this->vexs); $i ++){

$min = $this->infinity;

$key;

foreach($this->vexs as $k=>$v){

if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){

$key = $v;

$min = $this->primArc[$v];

}

}

$this->primArc[$key] = 0;

foreach($this->arc[$key] as $k=>$v){

if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){

$this->primArc[$k] = $v;

$this->primVexs[$k] = $key;

}

}

}

return $this->primVexs;

}

//一般算法,生成最小生成树

public function bst(){

$this->primVexs = array($this->vexs[0]);

$this->primArc = array();

next($this->arc[key($this->arc)]);

$key = NULL;

$current = NULL;

while(count($this->primVexs) < count($this->vexs)){

foreach($this->primVexs as $value){

foreach($this->arc[$value] as $k=>$v){

if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){

if($key == NULL || $v < current($current)){

$key = $k;

$current = array($value . $k=>$v);

}

}

}

}

$this->primVexs[] = $key;

$this->primArc[key($current)] = current($current);

$key = NULL;

$current = NULL;

}

return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc);

}

//一般遍历

public function reserve(){

$this->hasList = array();

foreach($this->arc as $key=>$value){

if(!in_array($key, $this->hasList)){

$this->hasList[] = $key;

}

foreach($value as $k=>$v){

if($v == 1 && !in_array($k, $this->hasList)){

$this->hasList[] = $k;

}

}

}

foreach($this->vexs as $v){

if(!in_array($v, $this->hasList))

$this->hasList[] = $v;

}

return implode($this->hasList);

}

//广度优先遍历

public function bfs(){

$this->hasList = array();

$this->queue = array();

foreach($this->arc as $key=>$value){

if(!in_array($key, $this->hasList)){

$this->hasList[] = $key;

$this->queue[] = $value;

while(!empty($this->queue)){

$child = array_shift($this->queue);

foreach($child as $k=>$v){

if($v == 1 && !in_array($k, $this->hasList)){

$this->hasList[] = $k;

$this->queue[] = $this->arc[$k];

}

}

}

}

}

return implode($this->hasList);

}

//执行深度优先遍历

public function excuteDfs($key){

$this->hasList[] = $key;

foreach($this->arc[$key] as $k=>$v){

if($v == 1 && !in_array($k, $this->hasList))

$this->excuteDfs($k);

}

}

//深度优先遍历

public function dfs(){

$this->hasList = array();

foreach($this->vexs as $key){

if(!in_array($key, $this->hasList))

$this->excuteDfs($key);

}

return implode($this->hasList);

}

//返回图的二维数组表示

public function getArc(){

return $this->arc;

}

//返回结点个数

public function getVexCount(){

return count($this->vexs);

}

}

$a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');

$b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//键为边,值权值

$test = new MGraph($a, $b);

print_r($test->bst());

运行结果:

Array

(

[vexs] => Array

(

[0] => a

[1] => b

[2] => f

[3] => i

[4] => c

[5] => g

[6] => h

[7] => e

[8] => d

)

[arc] => Array

(

[ab] => 10

[af] => 11

[bi] => 12

[ic] => 8

[bg] => 16

[gh] => 19

[he] => 7

[hd] => 16

)

)

更多关于PHP相关内容感兴趣的读者可查看本站专题:《PHP数据结构与算法教程》、《php程序设计算法总结》、《php字符串(string)用法总结》、《PHP数组(Array)操作技巧大全》、《PHP常用遍历算法与技巧总结》及《PHP数学运算技巧总结》

希望本文所述对大家PHP程序设计有所帮助。

你可能感兴趣的:(kruskl算法c语言邻接矩阵)