- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 深入HBase——引入
黄雪超
大数据基础#深入HBase大数据数据库hbase
引入前面我们通过深入HDFS到深入MapReduce,从设计和落地,去深入了解了大数据最底层的基石——存储与计算是如何实现的。这个专栏则开始来看大数据的三驾马车中最后一个。通过前面我们对于GFS和MapReduce论文实现的了解,我们知道GFS在数据写入时,只对顺序写入有比较弱的一致性保障,而对于数据读取,虽然GFS支持随机读取,但在当时的硬件条件下,实际上也是支撑不了真正的高并发读取的;此外,M
- 腾讯云大数据套件TBDS与阿里云大数据能力产品对比
奋力向前123
数据库java人工智能腾讯云大数据阿里云
前言博主在接触大数据方向研究的时候是在2016年,那时候正是大数据概念非常火热的一个时间段,最著名的Google的3篇论文。GoogleFS、MapReduce、BigTable,奠定了大数据框架产品的基础。Google文件系统,计算框架和存储框架。往后所有的大数据产品和过程域无一不是在三个模块的基础上进行搭建,迭代,完善。我们最开始使用的都是开源的产品,比如hadoop,HDSF,MAPRedu
- hadoop 1.0 基本概念了解
fenggfa
hadoophadoop大数据mapreduce
hadoop基本概念了解common:hadoop组件公共常用工具类Avro:Avro是用于数据序列化的系统。不同机器之间数据交流的保障。MapReduce:MapReduce是一种编程模型,分为Map函数和Reduce函数。Map函数负责将输入数据转化为中间值,中间值再通过Reduce函数转化成输出数据HDFS:HDFS是一个分布式文件系统。通过一次写入,多次读出来实现。Chukwa:Chukw
- 深入理解Hadoop 1.0.0源码架构及组件实现
隔壁王医生
本文还有配套的精品资源,点击获取简介:Hadoop1.0.0作为大数据处理的开源框架,在业界有广泛应用。该版本包含核心分布式文件系统HDFS、MapReduce计算模型、Common工具库等关键组件。通过分析源码,可深入理解这些组件的设计和实现细节,包括数据复制、任务调度、容错机制以及系统配置管理。本课程旨在指导学生和开发者深入学习Hadoop的核心原理和实践应用,为其在大数据领域的进一步研究和开
- hadoop之MapReduce:片和块
哒啵Q297
hadoopmapreduce大数据
假如我现在500M这样的数据,如何存储?500M=128M+128M+128M+116M分为四个块进行存储。计算的时候,是按照片儿计算的,而不是块儿。块是物理概念,一个块就是128M,妥妥的,毋庸置疑。片是逻辑概念,一个片大约等于一个块。假如我现在需要计算一个300M的文件,这个时候启动多少个MapTask任务?答案是有多少个片儿,就启动多少个任务。一个片儿约等于一个块,但是最大可以128M*1.
- Hadoop智能房屋推荐系统 爬虫1w+ 协同过滤余弦函数推荐 代码+视频教程+文档
小盼江
课题设计Hadoop课设hadoop爬虫大数据
Hadoop智能房屋推荐系统爬虫1w+协同过滤余弦函数推荐带视频教程毕设设计课题设计【Hadoop项目】1.data.csv上传到hadoop集群环境2.data.csv数据清洗3.MapReducer数据汇总处理,将Reducer的结果数据保存到本地Mysql数据库中4.Springboot+Echarts+MySQL显示数据分析结果分析数据维度如下:【房屋分类热度】【各分类下房屋数量及占比】【
- Hadoop解决数据倾斜方法?思维导图 代码示例(java 架构)
用心去追梦
hadoopjava架构
数据倾斜(DataSkew)是分布式计算框架中常见的问题,特别是在MapReduce作业里。当某些Mapper或Reducer处理的数据量远大于其他节点时,就会导致整体任务执行时间延长,并且资源利用率不均衡。为了解决这个问题,Hadoop提供了多种策略和技术手段来优化数据分布和任务分配。以下是关于Hadoop解决数据倾斜的方法总结、思维导图描述以及Java代码示例。Hadoop解决数据倾斜方法概述
- MapReduce是什么?
头发那是一根不剩了
mapreduce大数据
MapReduce是一种编程模型,最初由Google提出,旨在处理大规模数据集。它是分布式计算的一个重要概念,通常用于处理海量数据并进行并行计算。MapReduce的基本思想是将计算任务分解为两个阶段:Map阶段和Reduce阶段。Map阶段:在这个阶段,输入的数据会被拆分成多个片段,每个片段会被分配给不同的计算节点(也叫做“Mapper”)。每个Mapper处理一部分数据并输出键值对(key-v
- MapReduce简单应用(二)——去重、排序和平均
梦醒沉醉
Hadoopmapreduce大数据
目录1.数据去重1.1原理1.2pom.xml中依赖配置1.3工具类util1.4去重代码1.5结果2.数据排序2.1原理2.2排序代码2.3结果3.计算均值3.1原理3.2自定义序列化数据类型DecimalWritable3.3计算平均值3.4结果参考1.数据去重 待去重的两个文本内容如下。2012-3-1a2012-3-2b2012-3-3c2012-3-4d2012-3-5a2012-3-
- 【MapReduce】分布式计算框架MapReduce
桥路丶
大数据Hadoop快速入门bigdata
分布式计算框架MapReduce什么是MapReduce?MapReduce起源是2004年10月Google发表了MapReduce论文,之后由MikeCafarella在Nutch(爬虫项目)中实现了MapReduce的功能。它的设计初衷是解决搜索引擎中大规模网页数据的并行处理问题,之后成为ApacheHadoop的核心子项目。它是一个面向批处理的分布式计算框架;在分布式环境中,MapRedu
- Hive自定义UDF函数
浊酒南街
#大数据系列三hiveUDF
目录一、UDF概述二、UDF种类三、如何自定义UDF四、自定义实现UDF和UDTF一、JSONObject解析JSON对象二、JSONArray解析JSON数组对象三、两个UDF的配合使用过程一、UDF概述UDF全称:User-DefinedFunctions,即用户自定义函数,在HiveSQL编译成MapReduce任务时,执行java方法,类似于像MapReduce执行过程中加入一个插件,方便
- MapReduce的代码编写
hjy1821
MapReduceMapReduce代码WordCount字数统计代码MapReduce编写MapReduce使用案例
MapReduce用例代码的编写流程1)函数入口①首先创建配置对象Configuration,用于加载配置文件的信息;②创建一个Job对象,通过getInstance()函数设置当前main函数所在的类,设置后运行代码可以找到函数的入口;③设置MapReduce的输入输出路径用于输入数据和输出计算的数据结果;注意若要是输出的路径在集群中已经存在,需要操作HDFS进行判断与删除,在此处要建立一个HD
- 一文了解mapreduce及工作原理
TEL浅笑嫣然
openstack大数据hadoop笔记
目录前言-MR概述1.HadoopMapReduce设计思想及优缺点设计思想优点:缺点:2.HadoopMapReduce核心思想3.MapReduce工作机制剖析MapReduce运行机制过程描述第一阶段:作业提交(图1-4步)第二阶段:作业初始化(图5-7步)第三阶段:任务的分配(图8)第四阶段:任务的执行(图9-11)第五阶段:作业完成Tips知识点:进度和状态更新4.MR各组成部分工作机制
- 大数据-267 实时数仓 - ODS Lambda架构 Kappa架构 核心思想
m0_74823336
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!MyBatis更新完毕目前开始更新Spring,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)Cl
- Hbase基础
yandao
hadoophbasebigdatahadoop
1.HBase简介HBASE理论HBase是一个基于Hadoop的分布式、面向列的开源数据库,对大数据实现了随机定位和实时读写。HBase是基于Google的Bigtable技术实现的,GoogleBigtable利用GFS作为其文件存储系统,HBase利用Hadoop的HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase利用Hadoop的M
- nginx+flume网络流量日志实时数据分析实战_日志数据分析(1)
2401_84182578
程序员nginxflume数据分析
得到visits模型hadoopjar/export/data/mapreduce/web_log.jarcn.itcast.bigdata.weblog.clickstream.ClickStreamVisit网络日志数据分析-数据加载对于日志数据的分析,Hive也分为三层:ods层、dw层、app层创建数据库createdatabaseifnotexistsweb_log_ods;create
- 如何处理大规模数据集中的数据处理:Spark和ApacheFlink
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明数据处理(DataProcessing)任务调度(TaskScheduling)HadoopApacheSparkApacheFlink3.核心算法原理和具体操作步骤以及数学公式讲解1.MapReduce(1)概述(2)算法原理分布式文件系统Map阶段Shuffle阶段Reduce阶段MapReduce的流程示意图Map阶段Shuffle阶段Reduce阶段执行
- HIVE常见面试题
兔子宇航员0301
数据开发小白成长笔记hivehadoop数据仓库
1.简述hiveHive是一个构建在Hadoop之上的数据仓库工具,主要用于处理和查询存储在HDFS上的大规模数据。Hive通过将结构化的数据文件映射成表,并提供类SQL的查询功能,使得用户可以通过编写SQL语句来进行数据分析,而不需要编写复杂的MapReduce程序2.简述hive读写文件机制Hive读写文件机制主要依赖Hadoop的HDFS(分布式文件系统)和MapReduce(计算框架)。
- 使用python实现Hadoop中MapReduce
qq_44801116
Pythonpythonhadoopmapreduce
Hadoop包含HDFS(分布式文件系统)、YARN(资源管理器)、MapReduce(编程模型)。一、三大组件的简介(1)HDFS(HadoopDistributedFileSystem):HDFS是Hadoop的分布式文件系统,它是将大规模数据分散存储在多个节点上的基础。主要负责数据的存储和管理,可以将大数据集分成多个数据块,并将数据块分配到不同的计算节点上存储,提高数据的可靠性和处理效率。旨
- 【大数据技术】编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)
Want595
Python大数据采集与分析大数据pythonhadoop
编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell)搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn)本机PyCharm连接CentOS虚拟机在阅读本文前,请确保已经阅读过以上三篇文章,成功搭建了Hadoop+MapReduce+Yarn+Python
- Hadoop1.0和2.0的主要区别
web_15534274656
javahadoop大数据hdfsdubbojava-zookeeper
Hadoop1.0指的是版本为ApacheHadoop0.20.x、1.x或者CDH3系列的Hadoop,组件主要由HDFS和MapReduce两个系统组成,HDFS是一个分布式文件存储系统,MapReduce是一个离线处理框架,分为三部分,运行时环境为JobTracker和TaskTracker,编程模型为Map映射和Reduce规约,数据处理引擎为MapTask和ReduceTask,Hado
- Hadoop1.0-HDFS介绍
szjianzr
HADOOP介绍hadoopHDFS
Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统。最核心的模块包括HadoopCommon、HDFS与MapReduce。HDFS是Hadoop分布式文件系统(HadoopDistributedFileSystem)的缩写,为分布式计算存储提供了底层支持。采用Java语言开发,可以部署在多种普通的廉价机器上,以集群处理数量积达到大型主机处理性能。一、HDFS基本概念1、Bl
- 大数据相关开源项目汇总
万里浮云
大数据
调度与管理服务Azkaban是一款基于Java编写的任务调度系统任务调度,来自LinkedIn公司,用于管理他们的Hadoop批处理工作流。Azkaban根据工作的依赖性进行排序,提供友好的Web用户界面来维护和跟踪用户的工作流程。YARN是一种新的Hadoop资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,解决了旧MapReduce框架的性能瓶颈。它的基本思想是把资源
- 为什么我的CDH不用Hue,改用Scriptis了?
兔子那么可爱
大数据UI开源数据分析中间件
理性谈谈Hue的优缺点平时做数据开发用的比较多的是CDH的Hue,Hue提供了对接Hadoop平台的UI界面,可以对Hbase数据进行直接操作,执行Mapreducer任务时有可视化的执行界面,进行数据报表和Oozie定时任务,可以说还是非常的方便的。但是用久了就会发现Hue也有许多痛点。数据表不能直接方便地导出Excel,降低了工作效率UDF和函数支持较差,没有自带的数据分析常用UDF函数库,也
- Hadoop3.2.1安装-单机模式和伪分布式模式
花菜回锅肉
大数据hadoophdfs大数据linux
Hadoop入门篇概述Hadoop是使用Java编写的,是为了解决大数据场景下的两大问题,分布式存储和分布式处理而诞生的,包含很多组件、套件。需要运行在Linux系统下。主要包括HDFS和MapReduce两个组件。下载安装下载下载地址https://archive.apache.org/dist/hadoop/common/选择合适自己的tar.gz版本下载,该文档选择V3.2.1。Hadoop
- Hive重点面试题
Major Tom _
hivehadoop数据仓库
文章目录Hive面试重点题目及答案1.Hive的优缺点及使用场景2.Hive与数据仓库的区别3.Hive的基本架构与元数据存储4.Hive内外部表的区别及适用场景5.Hive数据倾斜原因与解决方法6.HiveMapReduce的底层实现与优化方式7.Hive窗口函数的使用场景8.Hive分区与分桶的区别9.Hive的存储格式10.Hive计算引擎(MapReduce,Tez,Spark)的对比Hi
- spark和python的区别_Spark入门(Python)
weixin_39934257
spark和python的区别
Spark是第一个脱胎于该转变的快速、通用分布式计算范式,并且很快流行起来。Spark使用函数式编程范式扩展了MapReduce模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为Hadoop之上的特殊系统。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速(就如同使用Python解释器,与集群进行交互一样)。缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理
- hive表指定分区字段搜索_Hive学习-Hive基本操作(建库、建表、分区表、写数据)...
weixin_39710660
hive表指定分区字段搜索
hive简单认识Hive是建立在HDFS之上的数据仓库,所以Hive的数据全部存储在HDFS上。Hive的数据分为两部分,一部分是存在HDFS上的具体数据,一部分是描述这些具体数据的元数据信息,一般Hive的元数据存在MySQL上。Hive是类SQL语法的数据查询、计算、分析工具,执行引擎默认的是MapReduce,可以设置为Spark、Tez。Hive分内部表和外部表,外部表在建表的同时指定一个
- 11 Spark面试真题
TTXS123456789ABC
#Sparkspark面试大数据
11Spark大厂面试真题1.通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?2.hadoop和spark使用场景?3.spark如何保证宕机迅速恢复?4.hadoop和spark的相同点和不同点?5.RDD持久化原理?6.checkpoint检查点机制?7.checkpoint和持久化机制的区别?8.RDD机制理解吗?9.Spa
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出