基因组组装数据分析专题

欢迎关注”生信修炼手册”!

得到一个物种的参考基因组是开展后续结构和功能基因挖掘的前提,通过高通量测序可以快速的拼接得到基因组,本文整理了基因组组装相关的数据分析资料。

二代测序的基因组组装以kmer为序列的最小单位

  • 基因组组装中的kmer究竟是何方神圣

  • jellyfish:快速计算kmer分布

  • GenomeScope评估基因组大小和杂合度

  • Gerbil:支持GPU加速的kmer count工具

多款组装软件,可以用于组装不同类型的基因组

  • soapdenovo2进行基因组组装

  • velvet软件进行基因组组装

  • Abyss:基于布隆过滤器的基因组组装软件

  • ALLPATHS-LG基因组组装软件简介

  • spades基因组组装软件简介

  • QUAST:评估基因组组装效果

  • GAGE:基因组组装评估的金标准

得到基因组序列之后,可以开展结构组学研究,预测各种基因和基因组元件

  • SSRIT:简单重复序列识别工具

  • Tandem Repeats Finder:串联重复序列查找工具

  • RepeatMasker:查找基因组上的重复序列

  • tRNAscan-SE:预测基因组上的tRNA基因

  • RNAmmer:预测基因组上的核糖体RNA

  • barrnap:预测基因组上的核糖体RNA

  • GtRNAdb:tRNA数据库简介

  • tRNAdb:综合序列和二级结构的tRNA数据库

  • Dfam:真核生物转座元件数据库

  • Augustus:真核生物基因结构预测软件-安装篇

  • GeneMark-ES:真核生物编码基因预测软件

  • Glimmer:识别微生物中的蛋白编码基因

  • Euk-mPLOC:预测真核生物蛋白的亚细胞定位

预测出基因之后,需要进一步探究其功能

  • Gene Ontology-基因产物功能数据库

  • AmiGO2:在线浏览和查询GO信息的利器

  • quickGO:在线查询GO和GO注释信息的网站

  • GOA:Gene Ontology注释信息数据库

  • Pfam:蛋白质家族数据库简介

  • COG:直系同源蛋白数据库

  • eggNOG:从COG延伸出来的同源蛋白数据库

  • SMART:蛋白质结构域数据库

对于完整的基因组组装结果,还可以利用进化树探究和其他物种的进化关系

  • 使用Clustal进行多序列比对

  • 使用muscle进行多序列比对

  • 使用mafft进行多序列比对

  • kalign:适用于基因组规模的多序列比对工具

  • phyml:基于最大似然法构建进化树

  • FastTree:速度最快的最大似然法进化树构建软件

  • Newick: tree文件格式简介

对于动植物等多倍体,高杂合,多重复序列的复杂基因组而言,仅用二代测序其组装难度是非常大的,可以考虑二代和三代结合的策略,对于微生物,真菌等结构简单的小型参考基因组,利用二代测序就可以有一个不错的效果。当然如果追求完美,那还是三代测序更好。

·end·

—如果喜欢,快分享给你的朋友们吧—

往期精彩

  • 自己动手进行逻辑回归,你也可以!

  • GWAS大家都知道,Gene-Based GWAS你了解吗?

  • 3步搞定GWAS中的Gene Set Analysis

  • 你听说过Epistasis吗?

  • GWAS中的Gene-Gene Interactions如何分析?看这里

  • 终于搞清楚了Lasso回归和Ridge回归的区别

  • odd ratio置信区间的计算,你学会了吗?

  • 多元回归分析存在多重共线性了怎么办?

  • 基因型与表型的交互作用如何分析,多元回归来搞定

  • 曼哈顿图就够了吗?你还需要LocusZoom

  • GWAS做完了,下一步做什么?

  GWAS meta分析

  • GWAS样本量不够怎么办,meta分析了解一下

  • 你没看错,搞定GWAS meta分析只需一行代码!

  • meta分析的森林图不会画?看这里

  • GWAMA:GWAS meta-analysis的又一利器

  • 点击鼠标即可完成GWAS meta分析,任何人都可以!

  • 用R进行gwas meta分析,原来如此简单

  基因型填充

  • GWAS中的genotype imputation简介

  • 基因型填充中的phasing究竟是什么

  • 基因型填充前的质控条件简介

  • 使用shapeit进行单倍型分析

  • gtool:操作genotype data的利器

  • 使用IMPUTE2进行基因型填充

  • 使用Beagle进行基因型填充

  • 使用Minimac进行基因型填充

  • 使用Eagle2进行单倍型分析

  • X染色体的基因型填充

  • 文献解读|不同基因型填充软件性能的比较

  • Haplotype Reference Consortium:最大规模的单倍型数据库

  • Michigan Imputation Server:基因型填充的在线工具

  CNV分析

  • aCGH芯片简介

  • aCGH芯片分析简介

  • 基于SNP芯片进行CNV分析中的基本知识点

  • PennCNV:利用SNP芯片检测CNV

  • DGV:人类基因组结构变异数据库

  • dbvar:染色体结构变异数据库

  • DGVa:染色体结构变异数据库

  • CNVD:疾病相关的CNV数据库

  • DECIPHER:疾病相关的CNV数据库

  • 全基因组数据CNV分析简介

  • 使用CNVnator进行CNV检测

  • 使用lumpy进行CNV检测

  • CNVnator原理简介

  • WES的CNV分析简介

  • XHMM分析原理简介

  • 使用conifer进行WES的CNV分析

  • 使用EXCAVATOR2检测WES的CNV

  • 靶向测序的CNV分析简介

  • 使用CNVkit进行CNV分析

  • DECoN:最高分辨率的CNV检测工具

  TCGA

  • TCGA数据库简介

  • 使用GDC在线查看TCGA数据

  • 使用gdc-client批量下载TCGA数据

  • 一文搞懂TCGA中的分析结果如何来

  • 通过GDC Legacy Archive下载TCGA原始数据

  • 使用GDC API查看和下载TCGA的数据

  • 使用GDC下载TCGA肿瘤患者的临床信息

  • 使用TCGAbiolinks下载TCGA的数据

  • 使用TCGAbiolinks进行生存分析

  • 使用TCGAbiolinks分析TCGA中的表达谱数据

  • 使用TCGAbiolinks进行甲基化和转录组数据的联合分析

  • Broad GDAC:TCGA数据分析中心

  • 使用cBioPortal查看TCGA肿瘤数据

  • UCSC  Xena:癌症基因组学数据分析平台

  • GEPIA:TCGA和GTEx表达谱数据分析平台

  • TANRIC:肿瘤相关lncRNA数据库

  • SurvNet:基于网络的肿瘤biomarker基因查找算法

  • TCPA:肿瘤RPPA蛋白芯片数据中心

  • TCGA Copy Number Portal:肿瘤拷贝数变异数据中心

  生存分析

  • 生存分析详细解读

  • 用R语言进行KM生存分析

  • 使用OncoLnc进行TCGA生存分析

  • 用R语言进行Cox回归生存分析

  • 使用kmplot在线进行生存分析

  肿瘤数据库

  • ICGC:国际肿瘤基因组协会简介

  • HPA:人类蛋白图谱数据库

  • Oncomine:肿瘤芯片数据库

  • ONGene:基于文献检索的肿瘤基因数据库

  • oncomirdb:肿瘤相关的miRNA数据库

  • TSGene:肿瘤抑癌基因数据库

  • NCG:肿瘤驱动基因数据库

  • mutagene:肿瘤突变频谱数据库

  • CCLE:肿瘤细胞系百科全书

  • mSignatureDB:肿瘤突变特征数据库

  • GTEx:基因型和基因表达量关联数据库

  肿瘤免疫和新抗原

  • Cancer-Immunity Cycle:肿瘤免疫循环简介

  • TMB:肿瘤突变负荷简介

  • 肿瘤微环境:Tumor microenvironment (TME)简介

  • 肿瘤浸润免疫细胞量化分析简介

  • 使用EPIC预测肿瘤微环境中免疫细胞构成

  • TIMER:肿瘤浸润免疫细胞分析的综合网站

  • quanTIseq:肿瘤浸润免疫细胞定量分析

  • The Cancer Immunome Atlas:肿瘤免疫图谱数据库

  • 肿瘤新抗原简介

  • TSNAdb:肿瘤新抗原数据库

  • 使用NetMHCpan进行肿瘤新抗原预测分析

  Hi-C数据分析

  • chromosome-territories:染色质疆域简介

  • chromosome conformation capture:染色质构象捕获技术

  • 3C的衍生技术简介

  • 解密Hi-C数据分析中的分辨率

  • A/B compartment:染色质区室简介

  • TAD:拓扑关联结构域简介

  • chromatin loops:染色质环简介

  • Promoter Capture Hi-C:研究启动子区染色质互作的利器

  • 使用HiCUP进行Hi-C数据预处理

  • Juicer:Hi-C数据处理分析的利器

  • Juicer软件的安装详解

  • Juicebox:Hi-C数据可视化利器

  • Juicer实战详解

  • HiC-Pro:灵活的Hi-C数据处理软件

  • HiC-Pro实战详解

  • 3D Genome Browser:Hi-C数据可视化工具

  • HiCPlotter:Hi-C数据可视化工具

  • 3CDB:基于3C技术的染色质互作信息数据库

  • 3DIV:染色质空间互作数据库

  • 4DGenome:染色质相互作用数据库

  • 4D nucleome project:染色质三维结构研究必不可少的参考项目

  • 3dsnp:SNP在染色质环介导的调控网络中的分布数据库

  • iRegNet3D:疾病相关SNP位点在三维调控网络中的作用

  • 使用WashU Epigenome Browser可视化hi-c数据

  • HiGlass:高度定制的Hi-C数据可视化应用

  • Hi-C Data Browser:Hi-C数据浏览器

  • 使用FitHiC评估染色质交互作用的显著性

  • 使用TADbit识别拓扑关联结构域

  • 使用pyGenomeTracks可视化hi-c数据

  • hi-c辅助基因组组装简介

  • 文献解读|使用hi-C数据辅助埃及伊蚊基因组的组装

  chip_seq数据分析

  • Chip-seq简介

  • chip_seq质量评估之计算样本间的相关性

  • chip_seq质量评估之查看抗体富集效果

  • chip_seq质量评估之PCA分析

  • chip_seq质量评估之coverage分析

  • chip_seq质量评估之FRiP Score

  • chip_seq质量评估之cross correlation

  • chip_seq质量评估之文库复杂度

  • depth, bedgraph, bigwig之间的联系与区别

  • bigwig归一化方式详解

  • 使用igvtools可视化测序深度分布

  • 使用UCSC基因组浏览器可视化测序深度分布数据

  • 使用deeptools查看reads分布特征

  • 使用phantompeakqualtools进行cross correlation分析

  • blacklist regions:NGS测序数据中的黑名单

  • MACS:使用最广泛的peak calling软件之一

  • MACS2 peak calling实战

  • 使用SICER进行peak calling

  • 使用HOMER进行peak calling

  • peak注释信息揭秘

  • PAVIS:对peak区域进行基因注释的在线工具

  • 使用UPORA对peak进行注释

  • 使用GREAT对peak进行功能注释

  • annoPeakR:一个peak注释的在线工具

  • 使用ChIPpeakAnno进行peak注释

  • 使用ChIPseeker进行peak注释

  • 使用PeakAnalyzer进行peak注释

  • 使用homer进行peak注释

  • 利用bedtools预测chip_seq数据的靶基因

  motif

  • 关于motif你需要知道的事

  • 详解motif的PFM矩阵

  • 详解motif的PWM矩阵

  • 使用WebLogo可视化motif

  • 使用seqLogo可视化motif

  • 使用ggseqlogo可视化motif

  • MEME:motif分析的综合性工具

  • 使用MEME挖掘序列中的de novo motif

  • 使用DREME挖掘序列中的de novo motif

  • 使用MEME-ChIP挖掘序列中的de novo motif

  chip_seq数据库

  • ENCODE project项目简介

  • FactorBook:人和小鼠转录因子chip_seq数据库

  • ReMap:人类Chip-seq数据大全

  • IHEC:国际人类表观基因组学联盟

  • Epifactors:表观因子数据库

  • GTRD:最全面的人和小鼠转录因子chip_seq数据库

  • ChIP-Atlas:基于公共chip_seq数据进行分析挖掘

  • Cistrome DB:人和小鼠的chip_seq数据库

  • chipBase:转录因子调控网络数据

  • unibind:human转录因子结合位点数据库

  • chip_seq在增强子研究中的应用

  • DENdb:human增强子数据库

  • VISTA:人和小鼠的增强子数据库

  • EnhancerAtlas:人和小鼠的增强子数据库

  • FANTOM5:人类增强子数据库

  • TiED:人类组织特异性增强子数据库

  • HEDD:增强子疾病相关数据库

  • HACER:human增强子数据库

  • SEdb:超级增强子数据库简介

  • dbSUPER:人和小鼠中的超级增强子数据库

  • dbCoRC:核心转录因子数据库

  • 使用ROSE鉴定超级增强子

  18年文章目录

  • 2018年推文合集

扫描下方二维码,关注我们,解锁更多精彩内容!

生物信息入门

只差这一个

公众号

你可能感兴趣的:(基因组组装数据分析专题)