conv2d的输入_Conv1d, conv2d, conv3d

conv1d

输入数据格式为(batch_size, channel, length)

nn.conv1d(in_channels, outchannel, kernel_size, stride=1,padding=0,dilation=1,groups=1)

nn.Conv1d(1, 20, 5)表示输入1通道,20个卷积核,核大小为5

conv2d

输入数据格式为(batch_size, channel, Height, Width),

nn.conv2d(in_channels,out_channels,kernel_size, stride=(1,1),padding=0,dilation=(1,1),groups=1)

nn.Conv2d(1, 20, (3, 3), stride=(1, 1),padding=(2,2)) 表示输入1通道,20个卷积核,核大小为(3*3)

针对conv2d , 输入的是4维,[150,103,7,7]

conv3d

输入数据格式为(batch_size, channel, Depth, Height, Width)

nn.conv2d(in_channels,out_channels,kernel_size, stride=(1,1,1),padding=0,dilation=(1,1,1),groups=1)

nn.Conv3d(1, 90, (24, 3, 3), stride=(9,1,1),padding=(1,1,1))

你可能感兴趣的:(conv2d的输入)