输入数据格式为(batch_size, channel, length)
nn.conv1d(in_channels, outchannel, kernel_size, stride=1,padding=0,dilation=1,groups=1)
nn.Conv1d(1, 20, 5)表示输入1通道,20个卷积核,核大小为5
输入数据格式为(batch_size, channel, Height, Width),
nn.conv2d(in_channels,out_channels,kernel_size, stride=(1,1),padding=0,dilation=(1,1),groups=1)
nn.Conv2d(1, 20, (3, 3), stride=(1, 1),padding=(2,2)) 表示输入1通道,20个卷积核,核大小为(3*3)
针对conv2d , 输入的是4维,[150,103,7,7]
输入数据格式为(batch_size, channel, Depth, Height, Width)
nn.conv2d(in_channels,out_channels,kernel_size, stride=(1,1,1),padding=0,dilation=(1,1,1),groups=1)
nn.Conv3d(1, 90, (24, 3, 3), stride=(9,1,1),padding=(1,1,1))