在 n x n 的网格 grid 中,我们放置了一些与 x,y,z 三轴对齐的 1 x 1 x 1 立方体。每个值 v = grid[i] [j] 表示 v 个正方体叠放在单元格 (i, j) 上。现在,我们查看这些立方体在 xy 、yz 和 zx 平面上的投影。投影就像影子,将三维形体映射到一个二维平面上。从顶部、前面和侧面看立方体时,我们会看到“影子”。返回所有三个投影的总面积 。
输入示例1:
[[1, 2], [3, 4]]
输出示例1:
17
解释:
该立体图形的俯视图如下,数字代表该处有多少块立方体。
1 | 2 |
---|---|
3 | 4 |
投影面积 = 4(俯视图) + 7(主视图) + 6(左视图)= 17
输入示例2:
[[2]]
输出示例2:
5
输入示例3:
[[1, 0], [0, 2]]
输出示例3:
8
限制条件:
n == grid.length == grid[i].length
1 <= n <= 50
0 <= grid[i] [j] <= 50
S(俯视图) = sum(grid[i] [j] > 0),即矩阵中非零数值的个数。
S(主视图) = sum(max(grid[j])),即矩阵中每一列最大值的和。
S(左视图) = sum(max(grid[i])),即矩阵中每一行最大值的和。
class Solution:
def projectionArea(self, grid: List[List[int]]) -> int:
xy, xz, yz = 0, 0, 0
for i in range(len(grid)):
maxr, maxc = 0, 0
for j in range(len(grid[i])):
if grid[i][j] > 0:
xy += 1
maxr = max(maxr, grid[i][j])
maxc = max(maxc, grid[j][i])
xz += maxr
yz += maxc
return (xy+xz+yz)
class Solution:
def projectionArea(self, grid: List[List[int]]) -> int:
xyArea = sum(v > 0 for row in grid for v in row)
# 注意这里为 O(n) 空间复杂度,改为下标枚举则可以 O(1)
yzArea = sum(map(max, zip(*grid)))
zxArea = sum(map(max, grid))
return xyArea + yzArea + zxArea
class Solution {
public:
int projectionArea(vector<vector<int>> &grid) {
int n = grid.size();
int xyArea = 0, yzArea = 0, zxArea = 0;
for (int i = 0; i < n; i++) {
int yzHeight = 0, zxHeight = 0;
for (int j = 0; j < n; j++) {
xyArea += grid[i][j] > 0 ? 1 : 0;
yzHeight = max(yzHeight, grid[j][i]);
zxHeight = max(zxHeight, grid[i][j]);
}
yzArea += yzHeight;
zxArea += zxHeight;
}
return xyArea + yzArea + zxArea;
}
};
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int projectionArea(int** grid, int gridSize, int* gridColSize) {
int xyArea = 0, yzArea = 0, zxArea = 0;
for (int i = 0; i < gridSize; i++) {
int yzHeight = 0, zxHeight = 0;
for (int j = 0; j < gridSize; j++) {
xyArea += grid[i][j] > 0 ? 1 : 0;
yzHeight = MAX(yzHeight, grid[j][i]);
zxHeight = MAX(zxHeight, grid[i][j]);
}
yzArea += yzHeight;
zxArea += zxHeight;
}
return xyArea + yzArea + zxArea;
}
欢迎你进入我的个人博客网站参观交流:https://www.liangmeng.xyz