数据结构 C 代码 7.2: 邻接表及广度优先遍历

一.邻接表
邻接表,存储方法跟树的孩子链表示法相类似,是一种顺序分配和链式分配相结合的存储结构。如这个表头结点所对应的顶点存在相邻顶点,则把相邻顶点依次存放于表头结点所指向的单向链表中。
对于无向图来说,使用邻接表进行存储也会出现数据冗余,表头结点A所指链表中存在一个指向C的表结点的同时,表头结点C所指链表也会存在一个指向A的表结点。[1]
注意:
n个顶点e条边的无向图的邻接表表示中有n个顶点表结点和2e个边表结点。(换句话说,每条边(i,j)在邻接表 中出现两次:一次在关于i的邻接表中,另一次在关于j的邻接表中)
二.代码

1.

int* visitedPtr;

//定义图
typedef struct Graph{
	int** connections;
	int numNodes;
} *GraphPtr;


//图的初始化
GraphPtr initGraph(int paraSize, int** paraData) {
	int i, j;
	GraphPtr resultPtr = (GraphPtr)malloc(sizeof(struct Graph));
	resultPtr -> numNodes = paraSize;
	//resultPtr -> connections = (int**)malloc(paraSize * paraSize * sizeof(int));
	resultPtr -> connections = (int**)malloc(paraSize * sizeof(int*));
	for (i = 0; i < paraSize; i ++) {
		resultPtr -> connections[i] = (int*)malloc(paraSize * sizeof(int));
		for (j = 0; j < paraSize; j ++) {
			resultPtr -> connections[i][j] = paraData[i][j];
		}//Of for j
	}//Of for i
	
	return resultPtr;
}/



typedef struct GraphNodeQueue{
	int* nodes;
	int front;
	int rear;
}GraphNodeQueue, *QueuePtr;


//初始化队列
QueuePtr initQueue(){
	QueuePtr resultQueuePtr = (QueuePtr)malloc(sizeof(struct GraphNodeQueue));
	resultQueuePtr->nodes = (int*)malloc(QUEUE_SIZE * sizeof(int));
	resultQueuePtr->front = 0;
	resultQueuePtr->rear = 1;
	return resultQueuePtr;
}//Of initQueue


//判断队列是否为空
bool isQueueEmpty(QueuePtr paraQueuePtr){
	if ((paraQueuePtr->front + 1) % QUEUE_SIZE == paraQueuePtr->rear) {
		return true;
	}//Of if

	return false;
}


//在队列里增加一个节点
void enqueue(QueuePtr paraQueuePtr, int paraNode){
	if ((paraQueuePtr->rear + 1) % QUEUE_SIZE == paraQueuePtr->front % QUEUE_SIZE) {
		printf("Error, trying to enqueue %d. queue full.\r\n", paraNode);
		return;
	}
	paraQueuePtr->nodes[paraQueuePtr->rear] = paraNode;
	paraQueuePtr->rear = (paraQueuePtr->rear + 1) % QUEUE_SIZE;
}


//删除一个元素并返回
int dequeue(QueuePtr paraQueuePtr){
	if (isQueueEmpty(paraQueuePtr)) {
		printf("Error, empty queue\r\n");
		return NULL;
	}

	paraQueuePtr->front = (paraQueuePtr->front + 1) % QUEUE_SIZE;

	//printf("dequeue %d ends.\r\n", paraQueuePtr->nodes[paraQueuePtr->front]);
	return paraQueuePtr->nodes[paraQueuePtr->front];
}

2.邻接表的结构体定义

typedef struct AdjacencyNode {
	int column;
	AdjacencyNode* next;
}AdjacencyNode, *AdjacentNodePtr;



typedef struct AdjacencyList {
	int numNodes;
	AdjacencyNode* headers;
}AdjacencyList, *AdjacencyListPtr

3.构建邻接表

AdjacencyListPtr graphToAdjacentList(GraphPtr paraPtr) {
	
	int i, j, tempNum;
	AdjacentNodePtr p, q;
	tempNum = paraPtr->numNodes;
	AdjacencyListPtr resultPtr = (AdjacencyListPtr)malloc(sizeof(struct AdjacencyList));
	resultPtr->numNodes = tempNum;
	resultPtr->headers = (AdjacencyNode*)malloc(tempNum * sizeof(struct AdjacencyNode));
	

	for (i = 0; i < tempNum; i ++) {
		//Initialize headers.
		p = &(resultPtr->headers[i]);
		p->column = -1;
		p->next = NULL;

		for (j = 0; j < tempNum; j ++) {
			if (paraPtr->connections[i][j] > 0) {
				//Create a new node.
				q = (AdjacentNodePtr)malloc(sizeof(struct AdjacencyNode));
				q->column = j;
				q->next = NULL;

				
				p->next = q;
				p = q;
			}
		}
	}

	return resultPtr;
}

4.打印邻接表

void printAdjacentList(AdjacencyListPtr paraPtr) {
	int i;
	AdjacentNodePtr p;
	int tempNum = paraPtr->numNodes;

	printf("This is the graph:\r\n");
	for (i = 0; i < tempNum; i ++) {
		p = paraPtr->headers[i].next;
		while (p != NULL) {
			printf("%d, ", p->column);
			p = p->next;
		}//Of while
		printf("\r\n");
	}
}

5.广度优先遍历

void widthFirstTranverse(AdjacencyListPtr paraListPtr, int paraStart){
	printf("width first \r\n");
	//Use a queue to manage the pointers
	int i, j, tempNode;
	AdjacentNodePtr p;
	i = 0;


	visitedPtr = (int*) malloc(paraListPtr->numNodes * sizeof(int));
	
	for (i = 0; i < paraListPtr->numNodes; i ++) {
		visitedPtr[i] = 0;
	}

	QueuePtr tempQueuePtr = initQueue();
	printf("%d\t", paraStart);
	visitedPtr[paraStart] = 1;
	enqueue(tempQueuePtr, paraStart);
	// printf("After enqueue\r\n");
	while (!isQueueEmpty(tempQueuePtr)) {
		// printf("First while\r\n");
		tempNode = dequeue(tempQueuePtr);

		for (p = &(paraListPtr->headers[tempNode]); p != NULL; p = p->next) {
			j = p->column;
			// printf("j = %d \r\n", j);
			if (visitedPtr[j]) 
				continue;

			printf("%d\t", j);
			visitedPtr[j] = 1;
			enqueue(tempQueuePtr, j);
		}
	}
	printf("\r\n");
}

6.测试函数

void testGraphTranverse() {
	int i, j;
	int myGraph[5][5] = { 
		{0, 1, 0, 1, 0},
		{1, 0, 1, 0, 1}, 
		{0, 1, 0, 1, 1}, 
		{1, 0, 1, 0, 0}, 
		{0, 1, 1, 0, 0}};
	int** tempPtr;
	printf("Preparing data\r\n");
		
	tempPtr = (int**)malloc(5 * sizeof(int*));
	for (i = 0; i < 5; i ++) {
		tempPtr[i] = (int*)malloc(5 * sizeof(int));
	}//Of for i
	 
	for (i = 0; i < 5; i ++) {
		for (j = 0; j < 5; j ++) {
			//printf("i = %d, j = %d, ", i, j);
			//printf("%d\r\n", tempPtr[i][j]);
			tempPtr[i][j] = myGraph[i][j];
			//printf("i = %d, j = %d, %d\r\n", i, j, tempPtr[i][j]);
		}//Of for j
	}//Of for i
 
	printf("Data ready\r\n");
	
	GraphPtr tempGraphPtr = initGraph(5, tempPtr);
	AdjacencyListPtr tempListPtr = graphToAdjacentList(tempGraphPtr);

	printAdjacentList(tempListPtr);

	widthFirstTranverse(tempListPtr, 4);
}

7.运行结果

数据结构 C 代码 7.2: 邻接表及广度优先遍历_第1张图片

 首先来说一下广度优先遍历,看名称很高大上的样子,其实它的原理跟树的层次遍历几乎一模一样。那么我就以树的层次遍历简单说明一下原理。
要实现层次遍历需要创建队列作为辅助。
层次遍历收先将根结点入队,如下图

数据结构 C 代码 7.2: 邻接表及广度优先遍历_第2张图片

然后把A出队,把它的左右儿子入队:
数据结构 C 代码 7.2: 邻接表及广度优先遍历_第3张图片

把B出队,将B的左右儿子入队,也就是谁出队就把谁的左右儿子入队:
数据结构 C 代码 7.2: 邻接表及广度优先遍历_第4张图片

 C出队,把C的左右儿子入队,依次循环下去.....,直到全部都输出,简单的来看一下,大家是否发现树的输出顺序是ABCDEF,也就是说一层一层的输出。这也是广度优先遍历的原理。 

你可能感兴趣的:(数据结构,c语言,宽度优先)