6-2 邻接表存储图的广度优先遍历 (20 分)(C语言版)

先说思路:
BFS用队列实现。【不难,看下面代码即可】

试实现邻接表存储图的广度优先遍历。

函数接口定义:

void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) );

其中LGraph是邻接表存储的图,定义如下:

/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;        /* 邻接点下标 */
    PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};

/* 顶点表头结点的定义 */
typedef struct Vnode{
    PtrToAdjVNode FirstEdge; /* 边表头指针 */
} AdjList[MaxVertexNum];     /* AdjList是邻接表类型 */

/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;     /* 顶点数 */
    int Ne;     /* 边数   */
    AdjList G;  /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */

函数BFS应从第S个顶点出发对邻接表存储的图Graph进行广度优先搜索,遍历时用裁判定义的函数Visit访问每个顶点。当访问邻接点时,要求按邻接表顺序访问。题目保证S是图中的合法顶点。

裁判测试程序样例:

#include 

typedef enum {false, true} bool;
#define MaxVertexNum 10   /* 最大顶点数设为10 */
typedef int Vertex;       /* 用顶点下标表示顶点,为整型 */

/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;        /* 邻接点下标 */
    PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};

/* 顶点表头结点的定义 */
typedef struct Vnode{
    PtrToAdjVNode FirstEdge; /* 边表头指针 */
} AdjList[MaxVertexNum];     /* AdjList是邻接表类型 */

/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;     /* 顶点数 */
    int Ne;     /* 边数   */
    AdjList G;  /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */

bool Visited[MaxVertexNum]; /* 顶点的访问标记 */

LGraph CreateGraph(); /* 创建图并且将Visited初始化为false;裁判实现,细节不表 */

void Visit( Vertex V )
{
    printf(" %d", V);
}

void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) );

int main()
{
    LGraph G;
    Vertex S;

    G = CreateGraph();
    scanf("%d", &S);
    printf("BFS from %d:", S);
    BFS(G, S, Visit);

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:给定图如下
6-2 邻接表存储图的广度优先遍历 (20 分)(C语言版)_第1张图片

2

输出样例:

BFS from 2: 2 0 3 5 4 1 6
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) )
{
    
    PtrToAdjVNode p;//p的数据类型和FirstEdge的数据类型一致
    PtrToAdjVNode queue[MaxVertexNum];int head=0,tail=0;//定义队列
    Visit(S);
    Visited[S]=true;
    
    queue[tail++]=Graph->G[S].FirstEdge;
    while(head!=tail){
        p=queue[head++];
        while(p!=NULL){
            if(Visited[p->AdjV]==false){
                queue[tail++]=Graph->G[p->AdjV].FirstEdge;//入队
                Visit(p->AdjV);
                Visited[p->AdjV]=true;
            }
            p=p->Next;
        }
    }
}

你可能感兴趣的:(数据结构,c语言,宽度优先,图论,数据结构)