前面已经推导过
v ′ = p v p ∗ = p v p − 1 v'=pvp^*=pvp^{-1} v′=pvp∗=pvp−1
其中, v = [ 0 , v ⃗ ] v=[0,\vec{v}] v=[0,v], p = [ cos θ 2 , sin θ 2 u ⃗ ] p=[\cos\frac{\theta}{2},\sin\frac{\theta}{2}\vec{u}] p=[cos2θ,sin2θu],代入上式
v ′ = p v p ∗ = [ cos θ 2 , sin θ 2 u ⃗ ] [ 0 , v ⃗ ] [ cos θ 2 , − sin θ 2 u ⃗ ] = [ 0 − sin θ 2 u ⃗ ⋅ v ⃗ , cos θ 2 v ⃗ + 0 + sin θ 2 u ⃗ × v ⃗ ] [ cos θ 2 , − sin θ 2 u ⃗ ] = [ − sin θ 2 u ⃗ ⋅ v ⃗ , cos θ 2 v ⃗ + sin θ 2 u ⃗ × v ⃗ ] [ cos θ 2 , − sin θ 2 u ⃗ ] (3-8-1) \begin{aligned} v'&=pvp^* \\ &=[\cos\frac{\theta}{2},\sin\frac{\theta}{2}\vec{u}][0,\vec{v}][\cos\frac{\theta}{2},-\sin\frac{\theta}{2}\vec{u}] \\ &=[0-\sin\frac{\theta}{2}\vec{u}\cdot\vec{v},\cos\frac{\theta}{2}\vec{v}+0+\sin\frac{\theta}{2}\vec{u}\times\vec{v}][\cos\frac{\theta}{2},-\sin\frac{\theta}{2}\vec{u}] \\ &=[-\sin\frac{\theta}{2}\vec{u}\cdot\vec{v},\cos\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\vec{u}\times\vec{v}][\cos\frac{\theta}{2},-\sin\frac{\theta}{2}\vec{u}] \end{aligned} \tag{3-8-1} v′=pvp∗=[cos2θ,sin2θu][0,v][cos2θ,−sin2θu]=[0−sin2θu⋅v,cos2θv+0+sin2θu×v][cos2θ,−sin2θu]=[−sin2θu⋅v,cos2θv+sin2θu×v][cos2θ,−sin2θu](3-8-1)
分别计算实部和虚部
R e = − sin θ 2 cos θ 2 u ⃗ ⋅ v ⃗ + ( cos θ 2 v ⃗ + sin θ 2 u ⃗ × v ⃗ ) ⋅ sin θ 2 u ⃗ = − sin θ 2 cos θ 2 u ⃗ ⋅ v ⃗ + cos θ 2 sin θ 2 u ⃗ ⋅ v ⃗ + sin θ 2 ( u ⃗ × v ⃗ ) ⋅ u ⃗ = 0 + 0 = 0 (3-8-2) \begin{aligned} \mathrm{Re}&=-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{u}\cdot\vec{v}+(\cos\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\vec{u}\times\vec{v})\cdot\sin\frac{\theta}{2}\vec{u}\\ &=-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{u}\cdot\vec{v}+\cos\frac{\theta}{2}\sin\frac{\theta}{2}\vec{u}\cdot\vec{v}+\sin\frac{\theta}{2}(\vec{u}\times\vec{v})\cdot\vec{u}\\ &=0+0 \\ &=0 \end{aligned} \tag{3-8-2} Re=−sin2θcos2θu⋅v+(cos2θv+sin2θu×v)⋅sin2θu=−sin2θcos2θu⋅v+cos2θsin2θu⋅v+sin2θ(u×v)⋅u=0+0=0(3-8-2)
I m = ( − sin θ 2 u ⃗ ⋅ v ⃗ ) ⋅ ( − sin θ 2 u ⃗ ) + ( cos θ 2 v ⃗ + sin θ 2 u ⃗ × v ⃗ ) cos θ 2 + ( cos θ 2 v ⃗ + sin θ 2 u ⃗ × v ⃗ ) × ( − sin θ 2 u ⃗ ) (3-8-3) \begin{aligned} \mathrm{Im}&=(-\sin\frac{\theta}{2}\vec{u}\cdot\vec{v})\cdot(-\sin\frac{\theta}{2}\vec{u})+(\cos\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\vec{u}\times\vec{v})\cos\frac{\theta}{2} \\ &+(\cos\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\vec{u}\times\vec{v})\times(-\sin\frac{\theta}{2}\vec{u}) \end{aligned} \tag{3-8-3} Im=(−sin2θu⋅v)⋅(−sin2θu)+(cos2θv+sin2θu×v)cos2θ+(cos2θv+sin2θu×v)×(−sin2θu)(3-8-3)
我们希望将其写成矩阵乘法形式。
先证明公式: a ⃗ × ( b ⃗ × c ⃗ ) = ( a ⃗ ⋅ c ⃗ ) ⋅ b ⃗ − ( a ⃗ ⋅ b ⃗ ) ⋅ c ⃗ \vec{a}\times(\vec{b}\times\vec{c})=(\vec{a}\cdot\vec{c})\cdot\vec{b}-(\vec{a}\cdot\vec{b})\cdot\vec{c} a×(b×c)=(a⋅c)⋅b−(a⋅b)⋅c。
证明:
a ⃗ × b ⃗ = a ∧ b = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ b 1 b 2 b 3 ] = △ T a b (3-8-4) \begin{aligned} \vec{a}\times\vec{b}&=\boldsymbol{a}^{\wedge}\boldsymbol{b} \\ &=\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right]\left[\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right]\stackrel{\bigtriangleup}=\boldsymbol{T}_a\boldsymbol{b} \end{aligned} \tag{3-8-4} a×b=a∧b= 0a3−a2−a30a1a2−a10 b1b2b3 =△Tab(3-8-4)
那么(矩阵乘法满足结合律)
a ⃗ × ( b ⃗ × c ⃗ ) = ( T a T b ) c = T a T b c \vec{a}\times(\vec{b}\times\vec{c})=(\boldsymbol{T}_a\boldsymbol{T}_b)\boldsymbol{c}=\boldsymbol{T}_a\boldsymbol{T}_b\boldsymbol{c} a×(b×c)=(TaTb)c=TaTbc
而
T a T b = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ 0 − b 3 b 2 b 3 0 − b 1 − b 2 b 1 0 ] = [ − a 3 b 3 − a 2 b 2 a 2 b 1 a 3 b 1 a 1 b 2 − a 3 b 3 − a 1 b 1 a 3 b 2 a 1 b 3 a 2 b 3 − a 2 b 2 − a 1 b 1 ] = − ( a ⃗ ⋅ b ⃗ ) I + b a T \begin{aligned} \boldsymbol{T}_a\boldsymbol{T}_b&=\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right]\left[\begin{array}{c} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{array}\right] \\ &=\left[\begin{array}{c} -a_3b_3-a_2b_2 & a_2b_1 & a_3b_1 \\ a_1b_2 & -a_3b_3-a_1b_1 & a_3b_2 \\ a_1b_3 & a_2b_3 & -a_2b_2 -a_1b_1 \end{array}\right]\\ &=-(\vec{a}\cdot\vec{b})\boldsymbol{I}+\boldsymbol{b}\boldsymbol{a}^{\mathrm{T}} \end{aligned} TaTb= 0a3−a2−a30a1a2−a10 0b3−b2−b30b1b2−b10 = −a3b3−a2b2a1b2a1b3a2b1−a3b3−a1b1a2b3a3b1a3b2−a2b2−a1b1 =−(a⋅b)I+baT
则(用到了矩阵结合律)
a ⃗ × ( b ⃗ × c ⃗ ) = T a T b c = ( − ( a ⃗ ⋅ b ⃗ ) I + b a T ) c = − ( a ⃗ ⋅ b ⃗ ) c + b ( a T c ) = − ( a ⃗ ⋅ b ⃗ ) c + ( a ⃗ ⋅ c ⃗ ) b (3-8-5) \begin{aligned} \vec{a}\times(\vec{b}\times\vec{c})=\boldsymbol{T}_a\boldsymbol{T}_b\boldsymbol{c}&=(-(\vec{a}\cdot\vec{b})\boldsymbol{I}+\boldsymbol{b}\boldsymbol{a}^{\mathrm{T}})\boldsymbol{c} \\ &=-(\vec{a}\cdot\vec{b})\boldsymbol{c}+\boldsymbol{b}(\boldsymbol{a}^{\mathrm{T}}\boldsymbol{c}) \\ &=-(\vec{a}\cdot\vec{b})\boldsymbol{c}+(\vec{a}\cdot\vec{c})\boldsymbol{b} \end{aligned} \tag{3-8-5} a×(b×c)=TaTbc=(−(a⋅b)I+baT)c=−(a⋅b)c+b(aTc)=−(a⋅b)c+(a⋅c)b(3-8-5)
同理可证
( a ⃗ × b ⃗ ) × c ⃗ = ( a ⃗ ⋅ c ⃗ ) b − ( b ⃗ ⋅ c ⃗ ) a (3-8-6) (\vec{a}\times\vec{b})\times\vec{c}=(\vec{a}\cdot\vec{c})\boldsymbol{b}-(\vec{b}\cdot\vec{c})\boldsymbol{a} \tag{3-8-6} (a×b)×c=(a⋅c)b−(b⋅c)a(3-8-6)
证毕。
下面继续推导式(3-8-3)
I m = sin 2 θ 2 u ⃗ ⋅ v ⃗ ⋅ u ⃗ + cos 2 θ 2 v ⃗ + sin θ 2 cos θ 2 u ⃗ × v ⃗ − sin θ 2 cos θ 2 v ⃗ × u ⃗ − sin 2 θ 2 u ⃗ × v ⃗ × u ⃗ = sin 2 θ 2 ( u ⃗ ⋅ v ⃗ ) ⋅ u ⃗ + cos 2 θ 2 v ⃗ + sin θ u ⃗ × v ⃗ − sin 2 θ 2 [ ( u ⃗ ⋅ u ⃗ ) v − ( v ⃗ ⋅ u ⃗ ) u ] = sin 2 θ 2 ( u ⃗ ⋅ v ⃗ ) ⋅ u ‾ + cos 2 θ 2 v + sin θ u ⃗ × v ⃗ − sin 2 θ 2 v + sin 2 θ 2 ( v ⃗ ⋅ u ⃗ ) u ‾ = cos θ v + 2 sin 2 θ 2 ( v ⃗ ⋅ u ⃗ ) u + sin θ u ⃗ × v ⃗ = cos θ v + ( 1 − cos θ ) ( v ⃗ ⋅ u ⃗ ) u + sin θ u ⃗ × v ⃗ (3-8-7) \begin{aligned} \mathrm{Im}&=\sin^2\frac{\theta}{2}\vec{u}\cdot\vec{v}\cdot\vec{u}+\cos^2\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{u}\times\vec{v}-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{v}\times\vec{u}-\sin^2\frac{\theta}{2}\vec{u}\times\vec{v}\times\vec{u} \\ &=\sin^2\frac{\theta}{2}(\vec{u}\cdot\vec{v})\cdot\vec{u}+\cos^2\frac{\theta}{2}\vec{v}+\sin\theta\vec{u}\times\vec{v}-\sin^2\frac{\theta}{2}[(\vec{u}\cdot\vec{u})\boldsymbol{v}-(\vec{v}\cdot\vec{u})\boldsymbol{u}] \\ &=\underline{\sin^2\frac{\theta}{2}(\vec{u}\cdot\vec{v})\cdot\boldsymbol{u}}+\cos^2\frac{\theta}{2}\boldsymbol{v}+\sin\theta\vec{u}\times\vec{v}-\sin^2\frac{\theta}{2}\boldsymbol{v}+\underline{\sin^2\frac{\theta}{2}(\vec{v}\cdot\vec{u})\boldsymbol{u}} \\ &=\cos\theta\boldsymbol{v}+2\sin^2\frac{\theta}{2}(\vec{v}\cdot\vec{u})\boldsymbol{u}+\sin\theta\vec{u}\times\vec{v} \\ &=\cos\theta\boldsymbol{v}+(1-\cos\theta)(\vec{v}\cdot\vec{u})\boldsymbol{u}+\sin\theta\vec{u}\times\vec{v} \end{aligned} \tag{3-8-7} Im=sin22θu⋅v⋅u+cos22θv+sin2θcos2θu×v−sin2θcos2θv×u−sin22θu×v×u=sin22θ(u⋅v)⋅u+cos22θv+sinθu×v−sin22θ[(u⋅u)v−(v⋅u)u]=sin22θ(u⋅v)⋅u+cos22θv+sinθu×v−sin22θv+sin22θ(v⋅u)u=cosθv+2sin22θ(v⋅u)u+sinθu×v=cosθv+(1−cosθ)(v⋅u)u+sinθu×v(3-8-7)
注意: u ⃗ \vec{u} u 是单位向量,故 u ⃗ ⋅ u ⃗ = 1 \vec{u}\cdot\vec{u}=1 u⋅u=1。
也就是拉格朗日公式结果。证毕。
将指数函数 e x e^x ex 在 x = 0 x=0 x=0 处泰勒展开,即
e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + . . . + 1 n ! x n = ∑ n = 0 ∞ x n n ! (4-1-1) \begin{aligned} e^x &= 1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+...+\frac{1}{n!}x^n \\ &=\sum_{n=0}^{\infty}\frac{x^n}{n!} \end{aligned} \tag{4-1-1} ex=1+x+2!1x2+3!1x3+...+n!1xn=n=0∑∞n!xn(4-1-1)
将矩阵 A \boldsymbol{A} A 代入上式, 则
e A = ∑ n = 0 ∞ A n n ! e^{\boldsymbol{A}}=\sum_{n=0}^{\infty}\frac{\boldsymbol{A}^n}{n!} eA=n=0∑∞n!An
同样的,也有
e ϕ ∧ = ∑ n = 0 ∞ ( ϕ ∧ ) n n ! (4-1-2) e^{\boldsymbol{\phi}^{\wedge}}=\sum_{n=0}^{\infty}\frac{(\boldsymbol{\phi}^{\wedge})^n}{n!} \tag{4-1-2} eϕ∧=n=0∑∞n!(ϕ∧)n(4-1-2)
令 ϕ = θ a \boldsymbol{\phi}=\theta\boldsymbol{a} ϕ=θa, θ \theta θ为模长, a \boldsymbol{a} a 为单位方向向量。则上式可写为
e ( θ a ) ∧ = ∑ n = 0 ∞ ( θ a ∧ ) n n ! e^{\boldsymbol({\theta\boldsymbol{a}})^{\wedge}}=\sum_{n=0}^{\infty}\frac{(\theta\boldsymbol{a}^{\wedge})^n}{n!} e(θa)∧=n=0∑∞n!(θa∧)n
我们知道
a ∧ = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] \boldsymbol{a}^{\wedge}=\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right] a∧= 0a3−a2−a30a1a2−a10
则
a ∧ a ∧ = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] = [ − a 3 2 − a 2 2 a 1 a 2 a 1 a 3 a 1 a 2 − a 3 2 − a 1 2 a 2 a 3 a 1 a 3 a 2 a 3 − a 2 2 − a 1 2 ] (4-1-3) \begin{aligned} \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}&=\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right]\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right] \\ &=\left[\begin{array}{c} -a_3^2-a_2^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & -a_3^2-a_1^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & -a_2^2-a_1^2 \end{array}\right] \end{aligned} \tag{4-1-3} a∧a∧= 0a3−a2−a30a1a2−a10 0a3−a2−a30a1a2−a10 = −a32−a22a1a2a1a3a1a2−a32−a12a2a3a1a3a2a3−a22−a12 (4-1-3)
因为 a \boldsymbol{a} a 是单位向量,则有 a 1 2 + a 2 2 + a 3 2 = 1 a_1^2+a_2^2+a_3^2=1 a12+a22+a32=1,可得
a a T − I = [ a 1 a 2 a 3 ] [ a 1 a 2 a 3 ] = [ a 1 2 a 1 a 2 a 1 a 3 a 2 a 1 a 2 2 a 2 a 3 a 1 a 3 a 2 a 3 a 3 2 ] − [ 1 0 0 0 1 0 0 0 1 ] = [ − a 3 2 − a 2 2 a 1 a 2 a 1 a 3 a 1 a 2 − a 3 2 − a 1 2 a 2 a 3 a 1 a 3 a 2 a 3 − a 2 2 − a 1 2 ] = a ∧ a ∧ (4-1-4) \begin{aligned} \boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}=\left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right]\left[\begin{array}{ccc} a_1 & a_2 & a_3 \end{array}\right] &=\left[\begin{array}{c} a_1^2 & a_1a_2 & a_1a_3 \\ a_2a_1 & a_2^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & a_3^2 \end{array}\right]- \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ &=\left[\begin{array}{c} -a_3^2-a_2^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & -a_3^2-a_1^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & -a_2^2-a_1^2 \end{array}\right] \\ &=\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge} \end{aligned} \tag{4-1-4} aaT−I= a1a2a3 [a1a2a3]= a12a2a1a1a3a1a2a22a2a3a1a3a2a3a32 − 100010001 = −a32−a22a1a2a1a3a1a2−a32−a12a2a3a1a3a2a3−a22−a12 =a∧a∧(4-1-4)
a ∧ a ∧ a ∧ = [ − a 3 2 − a 2 2 a 1 a 2 a 1 a 3 a 1 a 2 − a 3 2 − a 1 2 a 2 a 3 a 1 a 3 a 2 a 3 − a 2 2 − a 1 2 ] [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] = [ 0 a 2 2 a 3 + a 3 3 + a 1 2 a 3 − a 2 3 − a 2 a 3 2 − a 1 a 2 2 − a 1 2 a 3 − a 3 3 − a 1 2 a 3 0 a 1 a 2 2 + a 1 3 + a 1 a 3 2 a 2 a 3 2 + a 1 2 a 2 + a 2 3 − a 1 a 3 2 − a 1 3 − a 1 a 2 2 0 ] \begin{aligned} \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}&=\left[\begin{array}{c} -a_3^2-a_2^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & -a_3^2-a_1^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & -a_2^2-a_1^2 \end{array}\right]\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right] \\ &=\left[\begin{array}{c} 0 & a_2^2a_3+a_3^3+a_1^2a_3 & -a_2^3-a_2a_3^2-a_1a_2^2 \\ -a_1^2a_3-a_3^3-a_1^2a_3 & 0 & a_1a_2^2+a_1^3+a_1a_3^2 \\ a_2a_3^2+a_1^2a_2+a_2^3 & -a_1a_3^2-a_1^3-a_1a_2^2 & 0 \end{array}\right] \\ \end{aligned} a∧a∧a∧= −a32−a22a1a2a1a3a1a2−a32−a12a2a3a1a3a2a3−a22−a12 0a3−a2−a30a1a2−a10 = 0−a12a3−a33−a12a3a2a32+a12a2+a23a22a3+a33+a12a30−a1a32−a13−a1a22−a23−a2a32−a1a22a1a22+a13+a1a320
又 a 1 2 + a 2 2 + a 3 2 = 1 a_1^2+a_2^2+a_3^2=1 a12+a22+a32=1,上式写为
a ∧ a ∧ a ∧ = [ 0 a 3 − a 2 − a 3 0 a 1 a 2 − a 1 0 ] = − a ∧ (4-1-5) \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}=\left[\begin{array}{c} 0 & a_3 & -a_2 \\ -a_3 & 0 & a_1 \\ a_2 & -a_1 & 0 \end{array}\right]=-\boldsymbol{a}^{\wedge} \tag{4-1-5} a∧a∧a∧= 0−a3a2a30−a1−a2a10 =−a∧(4-1-5)
对式(4-1-2)
e ϕ ∧ = e ( θ a ) ∧ = ∑ n = 0 ∞ ( θ a ∧ ) n n ! = I + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ + 1 3 ! θ 3 a ∧ a ∧ a ∧ + 1 4 ! θ 4 a ∧ a ∧ a ∧ a ∧ + . . . = ( a a T − a ∧ a ∧ ) + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ − 1 3 ! θ 3 a ∧ − 1 4 ! θ 4 a ∧ a ∧ + . . . = a a T + ( θ − 1 3 ! θ 3 + 1 5 ! θ 5 + . . . ) a ∧ + ( − 1 + 1 2 ! θ 2 − 1 4 ! θ 4 + . . . ) a ∧ a ∧ = ( a ∧ a ∧ + I ) + sin θ a ∧ − cos θ ( a ∧ a ∧ ) = ( 1 − cos θ ) a ∧ a ∧ + I + sin θ a ∧ = ( 1 − cos θ ) ( a a T − I ) + I + sin θ a ∧ = a a T − I − cos θ a a T + cos θ I + I + sin θ a ∧ = cos θ I + ( 1 − cos θ ) a a T + sin θ a ∧ \begin{aligned} e^{\boldsymbol{\phi}^{\wedge}}=e^{\boldsymbol({\theta\boldsymbol{a}})^{\wedge}}&=\sum_{n=0}^{\infty}\frac{(\theta\boldsymbol{a}^{\wedge})^n}{n!} \\ &=\boldsymbol{I}+\theta\boldsymbol{a}^{\wedge}+\frac{1}{2!}\theta^2 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\frac{1}{3!}\theta^3 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\frac{1}{4!}\theta^4 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+...\\ &=(\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge})+\theta\boldsymbol{a}^{\wedge}+\frac{1}{2!}\theta^2 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}-\frac{1}{3!}\theta^3 \boldsymbol{a}^{\wedge}-\frac{1}{4!}\theta^4 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+...\\ &=\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+(\theta-\frac{1}{3!}\theta^3+\frac{1}{5!}\theta^5+...)\boldsymbol{a}^{\wedge}+(-1+\frac{1}{2!}\theta^2-\frac{1}{4!}\theta^4+...)\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\\ &=(\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\boldsymbol{I})+\sin\theta \boldsymbol{a}^{\wedge}-\cos\theta(\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge})\\ &=(1-\cos\theta)\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\boldsymbol{I}+\sin\theta \boldsymbol{a}^{\wedge} \\ &=(1-\cos\theta)(\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I})+\boldsymbol{I}+\sin\theta \boldsymbol{a}^{\wedge}\\ &=\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}-\cos\theta\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+\cos\theta\boldsymbol{I}+\boldsymbol{I}+\sin\theta \boldsymbol{a}^{\wedge}\\ &=\cos\theta\boldsymbol{I}+(1-\cos\theta)\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+\sin\theta \boldsymbol{a}^{\wedge} \end{aligned} eϕ∧=e(θa)∧=n=0∑∞n!(θa∧)n=I+θa∧+2!1θ2a∧a∧+3!1θ3a∧a∧a∧+4!1θ4a∧a∧a∧a∧+...=(aaT−a∧a∧)+θa∧+2!1θ2a∧a∧−3!1θ3a∧−4!1θ4a∧a∧+...=aaT+(θ−3!1θ3+5!1θ5+...)a∧+(−1+2!1θ2−4!1θ4+...)a∧a∧=(a∧a∧+I)+sinθa∧−cosθ(a∧a∧)=(1−cosθ)a∧a∧+I+sinθa∧=(1−cosθ)(aaT−I)+I+sinθa∧=aaT−I−cosθaaT+cosθI+I+sinθa∧=cosθI+(1−cosθ)aaT+sinθa∧
于是得到李代数 ϕ \boldsymbol{\phi} ϕ 和旋转矩阵 R \boldsymbol{R} R 之间的映射关系,即
R = e ϕ ∧ = cos θ I + ( 1 − cos θ ) a a T + sin θ a ∧ (4-1-6) \boldsymbol{R}=e^{\boldsymbol{\phi}^{\wedge}}=\cos\theta\boldsymbol{I}+(1-\cos\theta)\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+\sin\theta \boldsymbol{a}^{\wedge} \tag{4-1-6} R=eϕ∧=cosθI+(1−cosθ)aaT+sinθa∧(4-1-6)
也就是 罗德里格斯公式。
已知李代数 ξ = [ ρ ϕ ] T ∈ R 6 \boldsymbol{\xi}=[\rho \quad \phi]^{\mathrm{T}}\in \boldsymbol{\mathbb{R}}^6 ξ=[ρϕ]T∈R6,它的反对称矩阵为
ξ ∧ = [ ϕ ∧ ρ 0 T 0 ] \boldsymbol{\xi}^{\wedge}=\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] ξ∧=[ϕ∧0Tρ0]
则李群为
T = exp ( ξ ∧ ) = [ ∑ n = 0 ∞ ( ϕ ∧ ) n n ! ∑ n = 0 ∞ ( ϕ ∧ ) n ( n + 1 ) ! ρ 0 T 0 ] ≜ [ R J ρ 0 T 1 ] (4-2-1) \begin{aligned} \boldsymbol{T}=\exp(\boldsymbol{\xi}^{\wedge})&=\left[\begin{array}{c} \sum_{n=0}^{\infty}\frac{(\boldsymbol{\phi}^{\wedge})^n}{n!} & \sum_{n=0}^{\infty}\frac{(\boldsymbol{\phi}^{\wedge})^n}{(n+1)!}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] \\ &\triangleq \left[\begin{array}{c} \boldsymbol{R} & \boldsymbol{J}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 1 \end{array}\right] \end{aligned} \tag{4-2-1} T=exp(ξ∧)=[∑n=0∞n!(ϕ∧)n0T∑n=0∞(n+1)!(ϕ∧)nρ0]≜[R0TJρ1](4-2-1)
下面开始证明
同样,假设 ϕ = θ a \boldsymbol{\phi}=\theta\boldsymbol{a} ϕ=θa, θ \theta θ为模长, a \boldsymbol{a} a为单位方向向量。将 exp ( ξ ∧ ) \exp(\boldsymbol{\xi}^{\wedge}) exp(ξ∧) 泰勒展开
exp ( ξ ∧ ) = 1 n ! ∑ n = 0 ∞ [ ϕ ∧ ρ 0 T 0 ] n = 1 n ! ∑ n = 0 ∞ [ θ a ∧ ρ 0 T 0 ] n (4-2-2) \exp(\boldsymbol{\xi}^{\wedge})=\frac{1}{n!}\sum_{n=0}^{\infty}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n=\frac{1}{n!}\sum_{n=0}^{\infty}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n \tag{4-2-2} exp(ξ∧)=n!1n=0∑∞[ϕ∧0Tρ0]n=n!1n=0∑∞[θa∧0Tρ0]n(4-2-2)
当 n = 0 n=0 n=0 时,
1 0 ! [ ϕ ∧ ρ 0 T 0 ] 0 = I \frac{1}{0!}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^0=\boldsymbol{I} 0!1[ϕ∧0Tρ0]0=I
当 n = 1 n=1 n=1 时,
1 1 ! [ θ a ∧ ρ 0 T 0 ] 1 = [ θ a ∧ ρ 0 T 0 ] \frac{1}{1!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^1=\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] 1!1[θa∧0Tρ0]1=[θa∧0Tρ0]
当 n = 2 n=2 n=2 时,
1 2 ! [ θ a ∧ ρ 0 T 0 ] [ θ a ∧ ρ 0 T 0 ] = [ ( θ a ∧ ) 2 θ a ∧ ρ 0 T 0 ] \frac{1}{2!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]=\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^2 & \theta\boldsymbol{a}^{\wedge}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] 2!1[θa∧0Tρ0][θa∧0Tρ0]=[(θa∧)20Tθa∧ρ0]
当 n = 3 n=3 n=3 时,
1 3 ! [ θ a ∧ ρ 0 T 0 ] [ θ a ∧ ρ 0 T 0 ] [ θ a ∧ ρ 0 T 0 ] = 1 3 ! [ ( θ a ∧ ) 3 ( θ a ∧ ) 2 ρ 0 T 0 ] \frac{1}{3!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]=\frac{1}{3!}\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^3 & (\theta\boldsymbol{a}^{\wedge})^2\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] 3!1[θa∧0Tρ0][θa∧0Tρ0][θa∧0Tρ0]=3!1[(θa∧)30T(θa∧)2ρ0]
以此类推
1 n ! [ θ a ∧ ρ 0 T 0 ] n = 1 n ! [ ( θ a ∧ ) n ( θ a ∧ ) n − 1 ρ 0 T 0 ] (4-2-3) \frac{1}{n!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n=\frac{1}{n!}\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^n & (\theta\boldsymbol{a}^{\wedge})^{n-1}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] \tag{4-2-3} n!1[θa∧0Tρ0]n=n!1[(θa∧)n0T(θa∧)n−1ρ0](4-2-3)
那么,式(4-1-8)可化为
exp ( ξ ∧ ) = 1 n ! ∑ n = 0 ∞ [ ϕ ∧ ρ 0 T 0 ] n = I + [ θ a ∧ ρ 0 T 0 ] + [ ( θ a ∧ ) 2 θ a ∧ ρ 0 T 0 ] + . . . + 1 n ! [ ( θ a ∧ ) n ( θ a ∧ ) n − 1 ρ 0 T 0 ] = [ ∑ n = 0 ∞ 1 n ! ( θ a ∧ ) n ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ a ∧ ) n ρ 0 T 1 ] (4-2-4) \begin{aligned} \exp(\boldsymbol{\xi}^{\wedge})&=\frac{1}{n!}\sum_{n=0}^{\infty}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n \\ &=\boldsymbol{I}+\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]+\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^2 & \theta\boldsymbol{a}^{\wedge}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]+...+\frac{1}{n!}\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^n & (\theta\boldsymbol{a}^{\wedge})^{n-1}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\\ &=\left[\begin{array}{c} \sum_{n=0}^{\infty}\frac{1}{n!}(\theta\boldsymbol{a}^{\wedge})^n & \sum_{n=0}^{\infty}\frac{1}{(n+1)!}(\theta\boldsymbol{a}^{\wedge})^n\rho \\ \boldsymbol{0}^{\mathrm{T}} & 1 \end{array}\right] \tag{4-2-4} \end{aligned} exp(ξ∧)=n!1n=0∑∞[ϕ∧0Tρ0]n=I+[θa∧0Tρ0]+[(θa∧)20Tθa∧ρ0]+...+n!1[(θa∧)n0T(θa∧)n−1ρ0]=[∑n=0∞n!1(θa∧)n0T∑n=0∞(n+1)!1(θa∧)nρ1](4-2-4)
其中,左上角为 S O ( 3 ) SO(3) SO(3) 指数映射,前面已经证明。令
J = ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ a ∧ ) n = I + 1 2 ! θ a ∧ + 1 3 ! ( θ a ∧ ) 2 + 1 4 ! ( θ a ∧ ) 3 + 1 5 ! ( θ a ∧ ) 4 = 1 θ ( 1 2 ! θ 2 − 1 4 ! θ 4 + . . . ) a ∧ + 1 θ ( 1 3 ! θ 3 − 1 5 ! θ 5 + . . . ) ( a ∧ ) 2 + I = 1 − cos θ θ a ∧ + θ − sin θ θ ( a ∧ ) 2 + I = 1 − cos θ θ a ∧ + ( 1 − sin θ θ ) ( a a T − I ) + I = 1 − cos θ θ a ∧ + ( 1 − sin θ θ ) a a T − I + sin θ θ I + I = sin θ θ I + ( 1 − sin θ θ ) a a T + 1 − cos θ θ a ∧ (4-2-5) \begin{aligned} \boldsymbol{J}&=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(\theta\boldsymbol{a}^{\wedge})^n \\ &=\boldsymbol{I}+\frac{1}{2!}\theta\boldsymbol{a}^{\wedge}+\frac{1}{3!}(\theta\boldsymbol{a}^{\wedge})^2+\frac{1}{4!}(\theta\boldsymbol{a}^{\wedge})^3+\frac{1}{5!}(\theta\boldsymbol{a}^{\wedge})^4 \\ &=\frac{1}{\theta}(\frac{1}{2!}\theta^2-\frac{1}{4!}\theta^4+...)\boldsymbol{a}^{\wedge}+\frac{1}{\theta}(\frac{1}{3!}\theta^3-\frac{1}{5!}\theta^5+...)(\boldsymbol{a}^{\wedge})^2+\boldsymbol{I} \\ &=\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge}+\frac{\theta-\sin\theta}{\theta}(\boldsymbol{a}^{\wedge})^2+\boldsymbol{I}\\ &=\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge}+(1-\frac{\sin\theta}{\theta})(\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I})+\boldsymbol{I}\\ &=\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge}+(1-\frac{\sin\theta}{\theta})\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}+\frac{\sin\theta}{\theta}\boldsymbol{I}+\boldsymbol{I}\\ &=\frac{\sin\theta}{\theta}\boldsymbol{I}+(1-\frac{\sin\theta}{\theta})\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge} \tag{4-2-5} \end{aligned} J=n=0∑∞(n+1)!1(θa∧)n=I+2!1θa∧+3!1(θa∧)2+4!1(θa∧)3+5!1(θa∧)4=θ1(2!1θ2−4!1θ4+...)a∧+θ1(3!1θ3−5!1θ5+...)(a∧)2+I=θ1−cosθa∧+θθ−sinθ(a∧)2+I=θ1−cosθa∧+(1−θsinθ)(aaT−I)+I=θ1−cosθa∧+(1−θsinθ)aaT−I+θsinθI+I=θsinθI+(1−θsinθ)aaT+θ1−cosθa∧(4-2-5)
注意,这里用到式(4-1-5) ( a ∧ ) 3 = − a ∧ (\boldsymbol{a}^{\wedge})^3=-\boldsymbol{a}^{\wedge} (a∧)3=−a∧ 和 a a T − I = a ∧ a ∧ \boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}=\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge} aaT−I=a∧a∧ 以及泰勒展开
cos θ = 1 − 1 2 ! θ 2 + 1 4 ! θ 4 + . . . \cos\theta=1-\frac{1}{2!}\theta^2+\frac{1}{4!}\theta^4+... cosθ=1−2!1θ2+4!1θ4+...
sin θ = θ − 1 3 ! θ 3 + 1 5 ! θ 5 + . . . \sin\theta=\theta-\frac{1}{3!}\theta^3+\frac{1}{5!}\theta^5+... sinθ=θ−3!1θ3+5!1θ5+...
综上,证毕。
一、(1) S O ( 3 ) \mathrm{SO(3)} SO(3) 直接求导
矩阵具有 弗罗比尼乌斯内积,类似向量的内积。它被定义为两个相同大小的矩阵 A \boldsymbol{A} A 和 B \boldsymbol{B} B 的对应元素的积的和, 即
< A , B > = ∑ i = 1 n ∑ j = 1 n a i j b i j <\boldsymbol{A},\boldsymbol{B}>=\sum_{i=1}^{n}\sum_{j=1}^na_{ij}b_{ij} <A,B>=i=1∑nj=1∑naijbij
以 3 × 3 3\times 3 3×3 矩阵为例,设
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] , B = [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] \boldsymbol{A}=\left[\begin{array}{c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right], \boldsymbol{B}=\left[\begin{array}{c} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array}\right] A= a11a21a31a12a22a32a13a23a33 ,B= b11b21b31b12b22b32b13b23b33
则有
< A , B > = ∑ i = 1 n ∑ j = 1 n a i j b i j <\boldsymbol{A},\boldsymbol{B}>=\sum_{i=1}^{n}\sum_{j=1}^na_{ij}b_{ij} <A,B>=i=1∑nj=1∑naijbij
对于 A T B \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B} ATB
A T B = [ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ] [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] = [ a 11 b 11 + a 21 b 21 + a 31 b 31 ? ? ? a 12 b 12 + a 22 b 22 + a 32 b 32 ? ? ? a 13 b 13 + a 23 b 23 + a 33 b 33 ] \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}=\left[\begin{array}{c} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{array}\right] \left[\begin{array}{c} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array}\right]= \left[\begin{array}{c} a_{11}b_{11}+a_{21}b_{21}+a_{31}b_{31} & ? & ? \\ ? & a_{12}b_{12}+a_{22}b_{22}+a_{32}b_{32} & ? \\ ? & ? & a_{13}b_{13}+a_{23}b_{23}+a_{33}b_{33} \end{array}\right] ATB= a11a12a13a21a22a23a31a32a33 b11b21