- 【论文笔记】GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
原文链接:https://arxiv.org/abs/2506.00034v1简介:现有的多传感器融合方法多使用基于注意力的拉直(flatten)融合或通过几何变换的BEV融合,但前者可解释性差,后者计算开销大(如下图(a)(b)所示)。本文提出GaussianFusion(下图(c)),一种基于高斯的多传感器融合框架,用于端到端自动驾驶。使用直观而紧凑的高斯表达,聚合不同传感器的信息。具体来说,
- GC393低功耗双电压比较器:精准、高效的信号处理解决方案
Jason13510238356
芯麦信号处理单片机嵌入式硬件智能家居音响蓝牙音箱
芯片概述GC393是一款双通道精密电压比较器,具有低至±1mV的输入失调电压(典型值)和宽电源电压范围(单电源2V~36V/双电源±1V~±18V)。该芯片采用独立设计,输入共模范围包含地电平,特别适合电池供电设备和工业控制系统。核心特性超低功耗:静态电流仅0.4mA(5V供电时)高精度:输入失调电压:±1mV(典型值)输入偏置电流:25nA(典型值)宽电压兼容:支持TTL/DTL/ECL/MOS
- 大模型——什么是 Vibe Coding?从零开始学习 AI 辅助编程
不二人生
大模型学习人工智能大模型辅助编程
大模型——什么是VibeCoding?从零开始学习AI辅助编程VibeCoding:代码消失,直觉驱动的软件开发新浪潮?生成式人工智能的指数级增长正不断重塑各个行业,软件开发领域也不例外。大约在2025年初,一股源自美国硅谷的新思潮开始引起关注:开发者似乎可以借助AI工具,在几乎不直接编写代码的情况下构建产品。这种依赖直觉、跳脱传统编码苦役的开发方式,被赋予了一个颇具时代感的名字——VibeCod
- Gemini vs DeepSeek:Transformer 架构下的技术路线差异与企业级选择
charles666666
transformer架构深度学习语言模型产品经理人工智能
一、引言:从商业价值切入Gemini和DeepSeek都基于Transformer架构,但在技术路线和应用场景上各有侧重。本文将解密同源Transformer下的技术分野,帮助企业做出更明智的大模型选型决策。二、Transformer核心机制精要Transformer架构是现代大语言模型的基础,其核心机制包括自注意力机制和前馈神经网络。自注意力机制使模型能够捕捉序列中元素的全局依赖关系,但也是GP
- 深度解码:企业级 AI 选型中 Gemini 与 DeepSeek 的架构对决
charles666666
人工智能架构语言模型深度学习产品经理机器学习
开篇:技术选型会议中的认知困局当技术团队尝试评估基于MoE(专家混合)架构的Gemini1.5Pro和DeepSeek-V3时,决策者往往陷入认知混乱。尽管两者同属MoE架构,实际测试表现却大相径庭。这种混乱源于对参数规模的盲目崇拜。Gemini1.5Pro拥有1.5万亿参数,而DeepSeek-V3参数规模仅为前者的一半。但在实际企业场景测试中,DeepSeek在中文语义理解任务中的准确率却高出
- C++ 内存泄漏排查全攻略:万字实战宝典
TravisBytes
编程问题档案c++开发语言linuxubuntu
写在前面本文定位为“从入门到精通”的深度教程,全文超过12,000字,结合作者多年在Qt框架、游戏引擎、服务器端及高并发协程框架中的一线经验,系统梳理C++内存泄漏的原理、检测、定位与修复方案。示例代码均可在GCC/Clang/MSVC(C++20标准)下编译通过,并特别对Windows、Linux、macOS三大平台的差异化工具与坑点进行说明。欢迎评论区互动交流~目录1.序章:为什么你迟早会遇到
- 干货分享|手把手教你,用 “扣子” 开发自己的 AI 智能体
全栈开发圈
人工智能
在当今时代,AI浪潮正以前所未有的态势席卷全球,“颠覆”“变革”等词汇频繁出现在我们的视野中,似乎已经成了老生常谈。当大多数人还沉浸在与大模型愉快聊天的乐趣时,那些走在时代前沿的高手们,早已悄然利用AI智能体(Agent)开启了自动工作、创造价值的新篇章。你是否曾无数次幻想,能拥有一个专属的AI助手?它可以在你毫无头绪时,自动生成精妙绝伦的文案;在时间紧迫的情况下,迅速制作出精美大气的PPT;还能
- Excalidraw:开源手绘风格白板工具的技术与生态解析
wylee
开源
一、项目定位与核心价值Excalidraw是一款基于浏览器的开源虚拟手绘风格白板工具,由Excalidraw团队开发并维护。项目以MIT协议开源,旨在提供轻量级、高定制性的在线绘图解决方案,适用于流程图设计、原型绘制、教学演示等场景。截至2025年3月,项目已发布v0.18.0版本,月下载量超24.5万次,被GoogleCloud、Meta等企业集成,成为开源协作工具领域的标杆项目。二、核心功能与
- linux环境下tomcat安装
M.za
linuxtomcat运维服务器
Tomcat一、什么是Tomcat?1.1、Tomcat介绍Tomcat又叫ApacheTomcat最早是sun公司开发的,1999年捐献给apache基金会,隶属于雅加达项目,现在已经独立成一个顶级项目,因为tomcat技术先进,性能稳定,又是一个开源的web应用服务器,所以很多企业都在使用,很多Java开发者也在使用,开发调试jsp的首选,被更多企业用于Java容器。Tomcat官网:http
- 84.7k Star!Excalidraw:开源的在线白板工具,具备手绘风格和实时协作功能
蚝油菜花
每日AI项目与应用实例人工智能开源画板实时协作
❤️如果你也关注大模型与AI的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的AI应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读Excalidraw是一款开源的在线白板工具,具备手绘风格和实时协作功能。支持多种绘图工具、便捷导出、离线可用及跨平台兼容性。适用于远程协作、头脑风暴、产品设计和技术绘图等多个场景。正文(附运行
- 基于单片机的住宅防火防盗报警系统设计
启初科技
51单片机毕业设计单片机毕业设计单片机嵌入式硬件
文章目录一、系统概述二、项目内容和功能介绍三、效果图四、资料获取一、系统概述基于单片机的住宅防火防盗报警系统设计介绍一、系统设计背景与意义随着城市化进程的加快和居民生活水平的提高,住宅安全已成为人们关注的焦点。火灾和盗窃是威胁住宅安全的两大主要因素,传统的人工巡查和简单的安防设备已难以满足现代住宅的安全需求。基于单片机的住宅防火防盗报警系统集成了传感器技术、单片机控制技术和无线通信技术,能够实时监
- 从0到1:SQL注入与XSS攻防实战——数据库安全加固全攻略
小张在编程
sqlxss数据库
引言2023年某电商平台用户数据泄露事件中,黑客仅用一行username='OR'1'='1的登录输入,就拖走了百万用户信息;另一家社交网站更离谱,用户在评论区输入alert('xss'),竟让千万级用户的浏览器成了“提线木偶”。这些看似简单的攻击,为何能撕开企业安全防线?今天我们就来拆解SQL注入与XSS的“作案手法”,并给出一套可落地的数据库安全加固方案——毕竟,防住这两类攻击,能解决80%的
- 微服务世界的“导航仪”!Spring Cloud五大注册中心选型指南,从此不再迷路!
码农技术栈
微服务微服务springcloud架构springbootjava后端
引言:为什么微服务需要“导航仪”?想象一下,你走进一座巨大的迷宫(微服务集群),里面有成百上千个房间(服务实例),每个房间都在动态变化位置(服务扩缩容)。注册中心就像迷宫里的导航仪,实时记录所有房间的位置,告诉你怎么最快找到目标。没有它?你可能会永远迷失在“服务调用”的迷宫里!注册中心的核心作用服务注册:服务启动时,主动上报自己的地址和状态。服务发现:调用方通过注册中心查询目标服务的位置。健康监测
- 网络工具Fing Network Tools v12.10.2专业版,WiFi设备扫描神器
米豆学社
网络工具
[软件名称]:网络工具FingNetworkTools[软件大小]:49.2MB[下载通道]:夸克盘|迅雷盘软件介绍《FingNetworkTools》v12.10.2专业版|WiFi安全卫士,一键检测所有联网设备✨核心功能设备扫描–实时发现WiFi网络中的所有连接设备,识别陌生入侵者⚡网络诊断–速度测试+延迟分析,找出Netflix卡顿真凶️安全防护–入侵检测+防火墙功能,守护家庭网络安全高级工
- C++系列(十):面向对象编程终极指南!从封装到多态,彻底掌握类与对象的核心奥秘
傅里叶的耶
C++语言系列(教程+实战)c++类和对象
引言面向对象编程(OOP)是现代软件开发的核心范式,C++通过封装、继承和多态三大特性提供了强大的面向对象能力。这些特性使代码更易维护、扩展和复用,是构建复杂系统的基石。本章将深入探讨C++类和对象的方方面面,从基础封装到高级多态应用,帮助您掌握面向对象编程的精髓。最后,如果大家喜欢我的创作风格,请大家多多关注up主,你们的支持就是我创作最大的动力!如果各位观众老爷觉得我哪些地方需要改进,请一定在
- MCP Streamable HTTP 样例(qbit)
pythonagent
前言模型上下文协议(ModelContextProtocol,MCP),是由Anthropic推出的开源协议,旨在实现大语言模型与外部数据源和工具的集成,用来在大模型和数据源之间建立安全双向的连接。本文代码技术栈Python3.11.8FastMCP2.10.3MCP的传输机制StandardInput/Output(stdio)StreamableHTTPServer-SentEvents(SS
- Spring框架中的Component与Bean注解
SpringBoot中的@Bean与@ComponentSpring的@Component和@Bean注解的关键区别在于:@Bean注解可用于暴露您自己编写的JavaBeans,而@Component注解可用于暴露源代码由他人维护的JavaBeans。Sprin
- 2025 轻松部署 ERPNext
linux
在数字化转型浪潮不断推进的2025年,企业对高效、灵活的企业资源计划(ERP)系统需求日益增长。作为一款开源且功能全面的ERP系统,ERPNext以其模块化、易用性和强大的自定义能力,受到越来越多中小企业的青睐。然而,部署ERPNext仍然是许多企业信息化过程中的一大挑战。本文将介绍如何借助云平台实现快速、轻松、安全地部署ERPNext系统。什么是ERPNext?ERPNext是一个开源的ERP系
- 从零开始:构建支持上下文窗口的AI原生应用实战指南
AI天才研究院
AI人工智能与大数据AI-nativeai
从零开始:构建支持上下文窗口的AI原生应用实战指南关键词:大语言模型(LLM)、上下文窗口、AI原生应用、token管理、对话状态保持、向量检索、记忆压缩摘要:本文从AI原生应用的核心需求出发,系统讲解支持上下文窗口的应用构建全流程。通过解析上下文窗口的技术本质、关键挑战及解决方案,结合Python代码实战和真实场景案例,帮助开发者掌握从需求分析到落地部署的完整方法。内容涵盖上下文窗口管理策略、t
- 稀缺工具,效率拉满!
在办公场景中,图像和文档是最常接触的两类文件类型。日常工作中经常需要对多个文件进行批量处理,如图片转文档、PDF文件空白页删除、PDF转双层、图片校正等操作。这些重复性操作如果逐个处理不但效率极低下,还可能出现错误,而利用批量操作工具。可以快速完成大量文件的批量操作;分享一款高效的文档、图片批量操作工具:图档批处理助手v1.2.1;图档批处理助手是一款专注于高效处理文档与图像批任务的轻量级工具,软
- C++树状数组详解
浩瀚星辰2024
java算法数据结构
C++树状数组深度解析第1章引言:为什么需要树状数组1.1动态序列处理的挑战在现代计算机科学中,我们经常需要处理动态变化的序列数据,这类数据具有以下特点:实时更新:数据点会随时间不断变化频繁查询:需要快速获取特定区间的统计信息大规模数据:通常涉及数百万甚至数十亿个数据点考虑一个实时股票分析系统:需要监控数千只股票的价格变化,并实时计算:某只股票在特定时间段内的平均价格多只股票之间的价格相关性价格波
- 题解:P13017 [GESP202506 七级] 线图
YLCHUP
刷题之路算法图论深度优先数学建模c++数据结构笔记
首先明白定义:线图L(G)L(G)L(G)的顶点对应原图GGG的边,当且仅当原图中的两条边有公共顶点时,对应的线图顶点之间有一条边。不难想到,对于原图中的每个顶点vvv,其度数d(v)d(v)d(v)对应的边集可以形成(d(v)2)\binom{d(v)}{2}(2d(v))对相邻边。每对相邻边在线图中会产生一条边。用公式表示就是这样的(设G=(V,E)G=(V,E)G=(V,E)):∣EL(G)
- 检索增强生成(RAG)技术演进:从论文到工业级应用
AGI大模型与大数据研究院
AI大模型应用开发实战ai
检索增强生成(RAG)技术演进:从论文到工业级应用关键词:RAG、检索增强生成、大语言模型、知识检索、工业应用、技术演进、AI系统架构摘要:本文深入探讨检索增强生成(RAG)技术从学术研究到工业应用的完整演进历程。我们将从基础概念出发,逐步解析RAG的核心原理、架构设计、实现细节和优化策略,并通过实际案例展示如何构建高效可靠的工业级RAG系统。文章还将分析当前技术挑战和未来发展方向,为读者提供全面
- 颠覆人机交互!多模态 AI Agents 大模型如何用 5 大模式开启智能新时代?
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列七颠覆人机交互!多模态AIAgents大模型如何用5大模式开启智能新时代?一、从“单一感知”到“多模态融合”:A
- 深入剖析开源AI阅读器项目Saga Reader基于大模型的文本转换与富文本渲染优化方案
魑魅丶小鬼
人工智能
引言AI阅读器作为一种新型的内容消费工具,正在改变人们获取和处理信息的方式。本文将介绍SagaReader项目中如何利用大型语言模型(LLM)进行网页内容抓取、智能优化和富文本渲染,特别是如何通过精心设计的提示词(prompt)引导LLM生成样式丰富的HTML内容,提升用户阅读体验。关于SagaReader基于Tauri开发的著名开源AI驱动的智库式阅读器(前端部分使用Web框架),能根据用户指定
- 人人视频android资源比ios多,人人视频
魑魅丶小鬼
人人视频,国内专业的海外视频社区。人人视频最新版v5.5.1更新说明(2021-05-20)1、首页全新改版,内容更丰富,推荐更精准,你的口味我们知道2、“剧荒”升级为“快看”,告别剧荒,快速找剧,一刷就上瘾!3、支持快看、片单的快速搜索,直达心仪内容4、VIP权益升级,更多优质大片等着你5、字幕全新优化,视频高清画质,尽在人人视频如发现版本老旧,欢迎邮件反馈toususpam#liqucn(do
- 实操 SpringBoot+MCP!
清风孤客
springboot后端java人工智能
引言随着人工智能的飞速发展,大语言模型(LLM)正在革命性地重塑用户与软件的交互范式。想象一下这样的场景:用户无需钻研复杂的API文档或者在繁琐的表单间来回切换,只需通过自然语言直接与系统对话——“帮我查找所有2023年出版的图书”、“创建一个新用户叫张三,邮箱是
[email protected]”。这种直观、流畅的交互方式不仅能显著降低新用户的学习曲线,更能大幅削减B端系统的培训成本和实施
- Shusen Wang推荐系统学习 --召回 ItemCF
我.佛.糍.粑
学习深度学习人工智能推荐算法
学习b站up主ShusenWang的推荐系统基于物品的协同过滤(ItrmCF)中心思想就是,如果你喜欢a,b,c三件商品,d商品与abc相似,那么你也可能喜欢d商品对此就要计算物品的相似程度物品相似度物品相似度的思想是,一个物品的相同用户很多就意味着这两件物品是相似的sim(i1,i2):=∣V∣∣W1∣∣W2∣sim(i_{1},i_{2}):={\frac{\big|\mathcal{V}\b
- 制作MikTex本地包可用于离线安装包
MikTex安装包版本是basic-miktex-24.1-x64.exe。注:basic版本表示只安装MikTex基本包,不安装全部包。在能够联网的电脑上安装MikTex软件后,可以按以下步骤制作本地包库。一、制作本地包库1、新建一个文件夹,比如在D盘新建miktex-local-repository目录2、管理员权限打开cmd3、在cmd中将当前目录切换到D盘4、使用miktexsetup工具
- 麒麟V10安装部署达梦数据库(单机版)
熊娜丽莎的微笑
数据库运维开发linux
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言1.单机部署过程1.1部署规划1.2数据库软件安装及环境配置1.2.1操作系统配置1.2.2数据库软件安装1.3使用dminit工具初始化实例1.4注册服务并启动实例1.5登录数据库1.6归档配置1.7定制备份策略1.8数据库参数优化1.9配置sql日志1.10迁移信息统计查询总结前言麒麟V10安装部署达梦数据库单机安装的
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟