「图像 merge」无中生有制造数据

在进行一个新项目的时候,往往缺少一些真实数据,导致没办法进行模型训练,这时候就需要算法工程师自行制作一些数据了,比如这篇文章分享的 bag 目标检测,在检测区域没有真实的 bag数据

此时,就可以采用图像拼接的方式将凑集到的 bag图像粘贴到场景图像中【前提,目标图一般为“大头贴”】,当然场景图片并不是所有的位置都可以粘贴,一般有特定区域,比如 地面、墙壁、某设备等,因此还需要采用标注工具将这些目标区域标注出来,算法通过读取对应的目标区域,随机设定区域内的坐标点进行粘贴,将目标图粘贴到场景图当中

当然并不是任何形式的目标图都可以粘贴,为了更好的融合场景当中,还需要将目标从 大头贴当中给 扣出来,即除了目标区域,其他区域设置为透明格式,这样拼接的效果才“更”加真实一些【还是很假的!!!】

具体的操作过程如何所示,代码附最后,如有 bug 还望见谅!

1、制作底片模版

博主采用的 LabelImg标注工具,将底片待粘贴区域标注好

labelImg 的显示界面

标注完成的 txt 内容
「图像 merge」无中生有制造数据_第1张图片


2、将对应的大头贴目标头图处理

从 jpg 图像将目标 “扣” 出来,此处采用的像素抠图,将白色区域设置为透明,此处并不通用,不同目标的小伙伴自行修改代码,png的图像格式可以保存 alpha通道


#  !/usr/bin/env  python
#  -*- coding:utf-8 -*-
# @Time   :  2023.11
# @Author :  绿色羽毛
# @Email  :  [email protected]
# @Blog   :  https://blog.csdn.net/ViatorSun
# @Note   :  jpg2png.py



import os
import cv2
import numpy as np
import os.path as osp



file_path = "/media/yinzhe/DataYZ/DataSet/DataSet/bag_masknew"
save_path = file_path + "_out"

if not osp.exists(save_path):
    os.makedirs(save_path)

img_lst = []
for path, dirs, files in os.walk(file_path):
    for file in files:
        if os.path.splitext(file)[1] in ['.jpg', ".png", ".JPG", ".jpeg"]:  # 扫描指定格式文件
            img_dir = osp.join(path, file)
            img_save = osp.join(save_path, file)
            img = cv2.imread(img_dir)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)                               # 转换为RGB格式
            png_img = osp.join(save_path, file.split(".")[0] + ".png")

            white_mask = cv2.inRange(img, (200, 200, 200), (255, 255, 255))  	# 提取白色部分
            img = cv2.cvtColor(img, cv2.COLOR_RGB2BGRA)

            img[:,:,3][white_mask == 255] = 0                       			# 将白色部分变成透明

            cv2.imwrite(png_img, img)


3、将底片与透明目标进行叠加融合

叠加融合的方法有很多种,此处只采用了最简单的叠加方式,也可以考虑 cv2.seamlessClone
最终成果如下图所示

在这里插入图片描述

除了生成合成图片,标注信息也同步生成

「图像 merge」无中生有制造数据_第2张图片

注意! 此处的标注信息是按照标注框尺寸保存的【此处隐藏bug后续优化】
提示:可以根据目标区域的非透明区域进行保存

#  !/usr/bin/env  python
#  -*- coding:utf-8 -*-
# @Time   :  2023.10
# @Author :  绿色羽毛
# @Email  :  [email protected]
# @Blog   :  https://blog.csdn.net/ViatorSun
# @Note   :  ps_merge_img.py



import os
import cv2
import random
from random import sample
import numpy as np
import argparse  




def read_label_txt(label_dir):
    labels = []
    with open(label_dir) as fp:
        for f in fp.readlines():
            labels.append(f.strip().split(' '))
    return labels

def rescale_yolo_labels(labels, img_shape):
    height, width, nchannel = img_shape
    rescale_boxes = []
    for box in list(labels):
        x_c = float(box[1]) * width
        y_c = float(box[2]) * height
        w = float(box[3]) * width
        h = float(box[4]) * height
        x_left = x_c - w * .5
        y_left = y_c - h * .5
        x_right = x_c + w * .5
        y_right = y_c + h * .5
        rescale_boxes.append([box[0], int(x_left), int(y_left), int(x_right), int(y_right)])
    return rescale_boxes

def xyxy2xywh(image, bboxes):
    height, width, _ = image.shape
    boxes = []
    for box in bboxes:
        if len(box) < 4:
            continue
        cls = int(box[0])
        x_min = box[1]
        y_min = box[2]
        x_max = box[3]
        y_max = box[4]
        w = x_max - x_min
        h = y_max - y_min
        x_c = (x_min + x_max) / 2.0
        y_c = (y_min + y_max) / 2.0
        x_c = x_c / width
        y_c = y_c / height
        w = float(w) / width
        h = float(h) / height
        boxes.append([cls, x_c, y_c, w, h])
    return boxes

def cast_color(img, value):
    img_t = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
    h,s,v = cv2.split(img_t)
    # 增加图像对比度
    v2 = np.clip(cv2.add(2*v,value),0,255)
    img2 = np.uint8(cv2.merge((h,s,v2)))
    img_cast = cv2.cvtColor(img2,cv2.COLOR_HSV2BGR)             # 改变图像对比度
    return img_cast

def brightness(img, value):
    img_t = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
    h,s,v = cv2.split(img_t)
    # 增加图像亮度
    v1 = np.clip(cv2.add(1*v,value),0,255)
    img1 = np.uint8(cv2.merge((h,s,v1)))
    img_brightness = cv2.cvtColor(img1,cv2.COLOR_HSV2BGR)       # 改变图像亮度亮度
    return img_brightness


def add_alpha_channel(img):
    """ 为jpg图像添加alpha通道 """

    b_channel, g_channel, r_channel = cv2.split(img)  				# 拆分jpg图像通道
    alpha_channel = np.ones(b_channel.shape, dtype=b_channel.dtype) * 255  # 创建Alpha通道

    img_new = cv2.merge((b_channel, g_channel, r_channel, alpha_channel))  # 融合通道
    return img_new


def merge_img(jpg_img, png_img, y1, y2, x1, x2):
    """ 将png透明图像与jpg图像叠加
        y1,y2,x1,x2为叠加位置坐标值
    """

    # 判断jpg图像是否已经为4通道
    if jpg_img.shape[2] == 3:
        jpg_img = add_alpha_channel(jpg_img)

    '''
    当叠加图像时,可能因为叠加位置设置不当,导致png图像的边界超过背景jpg图像,而程序报错
    这里设定一系列叠加位置的限制,可以满足png图像超出jpg图像范围时,依然可以正常叠加
    '''
    yy1 = 0
    yy2 = png_img.shape[0]
    xx1 = 0
    xx2 = png_img.shape[1]

    if x1 < 0:
        xx1 = -x1
        x1 = 0
    if y1 < 0:
        yy1 = - y1
        y1 = 0
    if x2 > jpg_img.shape[1]:
        xx2 = png_img.shape[1] - (x2 - jpg_img.shape[1])
        x2 = jpg_img.shape[1]
    if y2 > jpg_img.shape[0]:
        yy2 = png_img.shape[0] - (y2 - jpg_img.shape[0])
        y2 = jpg_img.shape[0]

    # 获取要覆盖图像的alpha值,将像素值除以255,使值保持在0-1之间
    alpha_png = png_img[yy1:yy2, xx1:xx2, 3] / 255.0
    alpha_jpg = 1 - alpha_png

    # 开始叠加
    for c in range(0, 3):
        jpg_img[y1:y2, x1:x2, c] = ((alpha_jpg * jpg_img[y1:y2, x1:x2, c]) + (alpha_png * png_img[yy1:yy2, xx1:xx2, c]))

    return jpg_img


def random_add_patches_on_objects(image, mask_lst, rescale_boxes, paste_number):

    img = image.copy()
    new_bboxes = []
    cl = 0

    random.shuffle(rescale_boxes)

    for i, rescale_bbox in enumerate(rescale_boxes[:int(len(mask_lst))]):     # 待ps图像 目标框中

        p_img = mask_lst[i]
        bbox_h, bbox_w, bbox_c = p_img.shape

        obj_xmin, obj_ymin, obj_xmax, obj_ymax = rescale_bbox[1:]
        obj_w = obj_xmax - obj_xmin + 1         # 目标框尺寸
        obj_h = obj_ymax - obj_ymin + 1

        while not (bbox_w < obj_w and bbox_h < obj_h):                  # 如果目标框小于 mask尺寸,对mask进行缩放以确保可以放进 bbox中
            new_bbox_w = int(bbox_w * random.uniform(0.5, 0.8))
            new_bbox_h = int(bbox_h * random.uniform(0.5, 0.8))
            bbox_w, bbox_h = new_bbox_w, new_bbox_h

        success_num = 0
        while success_num < paste_number:
            center_search_space = [obj_xmin, obj_ymin, obj_xmax - new_bbox_w - 1, obj_ymax - new_bbox_h - 1] # 选取生成随机点区域
            if center_search_space[0] >= center_search_space[2] or center_search_space[1] >= center_search_space[3]:
                print('============== center_search_space error!!!! ================')
                success_num += 1
                continue

            new_bbox_x_min = random.randint(center_search_space[0], center_search_space[2])  # 随机生成点坐标
            new_bbox_y_min = random.randint(center_search_space[1], center_search_space[3])
            new_bbox_x_left, new_bbox_y_top, new_bbox_x_right, new_bbox_y_bottom = new_bbox_x_min, new_bbox_y_min, new_bbox_x_min + new_bbox_w - 1, new_bbox_y_min + new_bbox_h - 1
            new_bbox = [cl, int(new_bbox_x_left), int(new_bbox_y_top), int(new_bbox_x_right), int(new_bbox_y_bottom)]
            success_num += 1
            new_bboxes.append(new_bbox)

            p_img = cv2.resize(p_img, (new_bbox_w, new_bbox_h))

            img = merge_img(img, p_img, new_bbox_y_top, new_bbox_y_bottom+1, new_bbox_x_left, new_bbox_x_right+1)


    return img, new_bboxes




if __name__ == "__main__":
    # 用来装载参数的容器
    parser = argparse.ArgumentParser(description='PS')
    # 给这个解析对象添加命令行参数
    parser.add_argument('-i', '--images', default= '/media/yinzhe/DataYZ/DataSet/DataSet/bag_model',type=str, help='path of images')
    parser.add_argument('-t', '--mask', default= '/media/yinzhe/DataYZ/DataSet/DataSet/bag_mask',type=str, help='path of masks')
    parser.add_argument('-s', '--saveImage',default= '/media/yinzhe/DataYZ/DataSet/DataSet/bag_save', type=str, help='path of ')
    parser.add_argument('-c', '--scale', default= 0.2, type=float, help='number of img')
    parser.add_argument('-n', '--num', default= 5, type=int, help='number of img')

    args = parser.parse_args()  # 获取所有参数

    mask_filedirs = args.mask
    images_path = args.images
    save_path = args.saveImage
    scale, num = args.scale, args.num
    mask_paths = []

    if not os.path.exists(save_path):
        os.makedirs(save_path)


    # 读取所有的 mask 模版
    mask_lst = []
    for t_path in os.listdir(mask_filedirs):
        mask = cv2.imread(os.path.join(mask_filedirs, t_path), cv2.IMREAD_UNCHANGED)
        if (mask.shape[2] != 4):  # RGB alpha
            break
        mask_lst.append(mask)

    # template_paths = random.shuffle(template_paths) #打乱顺序
    for image_path in os.listdir(images_path) :
        if "txt" in image_path:
            continue

        image = cv2.imread(os.path.join(images_path, image_path))
        pre_name = image_path.split('.')[0]
        bbox_lst = read_label_txt(os.path.join(images_path, pre_name + ".txt"))

        if image is None or len(bbox_lst) == 0:
            print("empty image !!! or empty label !!!")
            continue

        # yolo txt转化为x1y1x2y2
        rescale_bboxes = rescale_yolo_labels(bbox_lst, image.shape)  # 转换坐标表示
        # maskes_path = sample(mask_paths, int(len(bbox_lst) * scale))

        #
        for i in range(num):
            maskes = sample(mask_lst, int(len(bbox_lst) * scale))
            img, bboxes = random_add_patches_on_objects(image, maskes, rescale_bboxes, 1)
            boxes = xyxy2xywh(img, bboxes)
            img_name = pre_name + '_' + str(i) + '.jpg'

            print('handle img:', img_name)
            cv2.imwrite(os.path.join(save_path, img_name), img)

            with open(os.path.join(save_path, img_name[:-4] + ".txt"), 'a') as f:
                for box in boxes:

                    mess = str(3) + " " + str(box[1]) + " " + str(box[2]) + " " + str(box[3] * 0.6) + " " + str(box[4]* 0.6) + "\n"
                    f.write(mess)


你可能感兴趣的:(#,OpenCV,CV,图像拼接,图像融合)