BN模块应该添加 激活层前面
在模型实例化后,我们需要对BN层进行初始化。PyTorch中的BN层是通过nn.BatchNorm1d或nn.BatchNorm2d类来实现的。
bn = nn.BatchNorm1d(20) #
对于1D输入数据,使用nn.BatchNorm1d;对于2D输入数据,使用nn.BatchNorm2d
在模型的前向传播过程中,我们需要将BN层应用到适当的位置。以全连接层为例,我们需要在全连接层的输出之后调用BN层。
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(10, 20)
self.bn = nn.BatchNorm1d(20)
self.fc2 = nn.Linear(20, 30)
self.fc3 = nn.Linear(30, 2)
def forward(self, x):
x = self.fc1(x)
x = self.bn(x)
x = self.fc2(x)
x = self.fc3(x)
return x
最主要的是需要注意输入参数的维度是否一致
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, input_size, hidden_size):
super(ResidualBlock, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, input_size)
self.relu = nn.ReLU()
def forward(self, x):
residual = x
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out += residual
out = self.relu(out)
return out
-----------------------------------
©著作权归作者所有:来自51CTO博客作者mob649e8166c3a5的原创作品,请联系作者获取转载授权,否则将追究法律责任
pytorch 全链接层设置残差模块
https://blog.51cto.com/u_16175510/6892589
该函数的必要参数有两个,filters(即 out_channels)和 kernel_size。对于 X = (1, 8, 128),如下代码可以得到 Y = (1, 6, 64):
import tensorflow as tf
X = tf.random.normal((1, 8, 128))
X.shape
# TensorShape([1, 8, 128])
conv = tf.keras.layers.Conv1D(64, 3, padding='valid')
Y = conv(X)
Y.shape
# TensorShape([1, 6, 64])
keras 为了让整个 api 更加用户友好,隐藏了两个关键参数。第一个是 data_format,在默认值 “channels_last”下,X 的维度顺序为 [batch_size, seq_length, input_channels],更符合NLP任务的直观理解。如果修改为“channels_first”,X 需要满足 [batch_size, input_channels, seq_length]。第二个是 input_channels,在函数内部自动获得:
input_channel = self._get_input_channel(input_shape)
如果 X 和 data_format 不匹配,就得不到正确的 in_channels。这里就是和 Pytorch 显著差异的地方。
该函数的必要参数有三个,in_channels, out_channels 和 kernel_size。被 keras 隐藏的 in_channels 被直接暴露,并且也不支持 data_format 的设置,X 的维度顺序必须是 [batch_size, input_channels, seq_length]。因此,对于通常的使用习惯,必须要先对输入做一次维度转换,再对输出做一次。对于 X = (1, 8, 128),如下代码可以得到 Y = (1, 6, 64):
import torch
X = torch.randn(1, 8, 128)
X.shape
# torch.Size([1, 8, 128])
Xt = X.transpose(1,2)
Xt.shape
# torch.Size([1, 128, 8])
conv = torch.nn.Conv1d(128, 64, 3)
Yt = conv(Xt)
Yt.shape
# torch.Size([1, 64, 6])
Y = Yt.transpose(Yt)
Y.shape
# torch.Size([1, 6, 64])
1、Pytorch搭建残差网络
2、扒源码:TensorFlow与Pytorch在一维卷积上的差异