使用numpy 库polyfit函数 与 scipy.optimize库curve_fit函数分别进行数据拟合
对比两者的用法及结果作图对比
numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
scipy.optimize.curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(- inf, inf), method=None, jac=None, **kwargs)
import pandas as pd
import os
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 步骤一(替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False # 步骤二(解决坐标轴负数的负号显示问题)
# 生成随机数据
x = np.sort(np.random.uniform(1, 10, 10))
y = np.sort(np.random.uniform(50, 100, 10))
# numpy polyfit拟合
p = np.polyfit(x, y, deg=2) # deg:int,定义拟合多项式的次
# scipy.optimize curve_fit 拟合
def fit_fun(x, a, b, c):
return a * x ** 2 + b * x + c
popt, pcov = curve_fit(fit_fun, x, y)
# 打印返回值
print(p)
print(popt)
# 画图numpy polyfit拟合
plt.figure(figsize=(10,8),dpi=150)
plt.subplot(2, 2, 1)
plt.scatter(x, y, label='原始数据点')
plt.plot(x, np.polyval(p, x), label='polyfit拟合的曲线')
plt.legend()
plt.xlabel("x")
plt.ylabel("y")
plt.title('numpy polyfit拟合')
# 画图scipy.optimize curve_fit 拟合
plt.subplot(2, 2, 2)
plt.scatter(x, y, label='原始数据点')
plt.plot(x, fit_fun(x, *popt), label='curve_fit拟合的曲线')
plt.legend()
plt.xlabel("x")
plt.ylabel("y")
plt.title('scipy.optimize curve_fit 拟合')
plt.show()