FastBond2阶段2——基于ESP32C3开发的简易IO调试设备

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第1张图片

  • 1. 项目介绍

之前买了许多国产单片机esp32c3一直在吃灰,没有发挥它的真实价值。非常感谢硬禾组织的Fastbond2活动,刚好两者经过微妙的碰撞。恰可以用于FastBond2活动主题4 - 测量仪器(单片机开发测试领域),或者用于国产ESP32C3单片机简单应用开发教育等领域。回顾立项过程,且听我娓娓道来!

1.1 立项目标

设计用户操作界面,该设备具备简单易用的操作界面,外加显示屏SSD1306和旋转编码器进行显示和控制,用户后期可进行二次开发WiFi或蓝牙连接电脑或手机监控。

1.2 立项指标

  1. 多种数字和模拟信号的输入输出:用户可以选择不同的输入输出模式,并通过设备的操作界面进行设置。例如,用户可以选择某个GPIO口作为模拟输入引脚,然后通过设备的操作界面设置输入的电压值,以模拟外部信号的输入,达到调试简易传感器读取和执行器输出功能。
  2. 支持PWM输出、舵机控制特性:用户可以选择某个GPIO口作为PWM输出引脚,并通过设备的操作界面设置PWM输出的频率和占空比。用户还可以选择某个GPIO口作为舵机控制引脚,并通过设备的操作界面设置舵机的角度。
  3. 因此系统具有一定的电流输出能力、信号辨识能力和显示交互功能。 
  • 2. 市场应用介绍

《FastBond2阶段2——基于ESP32C3开发的简易IO调试设备》是一种基于ESP32C3芯片开发的简易IO调试设备。它具有小巧、便携、功能强大等特点,可广泛应用于各个领域的电子设备调试和开发过程中。

市场应用介绍如下:

  1. 电子产品调试:该设备可以作为一种便携式的IO调试工具,用于电子产品的调试和测试。它支持多种接口,如GPIO、I2C、SPI、UART等,可以方便地与各种电子设备进行连接和通信,帮助工程师快速调试和验证电路功能。

  2. 物联网设备开发:随着物联网技术的发展,越来越多的设备需要与互联网进行连接和通信。该设备可以作为物联网设备开发过程中的工具,帮助开发者快速连接和通信,实现设备与云平台的数据传输和控制。

  3. 教育培训:该设备具有简单易用的特点,适合在教育培训领域使用。学生可以通过该设备学习和实践各种电子接口和通信协议的使用,提高他们的电子技术能力和创新能力。

  4. 嵌入式系统开发:对于嵌入式系统开发者来说,该设备可以作为一种基础工具,用于快速原型设计和验证。通过该设备,开发者可以快速连接和测试各种外设,并进行相关的软硬件开发工作。

  5. DIY爱好者:该设备适合DIY爱好者使用,他们可以利用该设备进行各种创意项目的开发。无论是控制LED灯的亮灭,还是与其他传感器进行数据交互,都可以通过该设备实现,并为DIY爱好者们带来更多的乐趣和创造力。

综上所述,《FastBond2阶段2——基于ESP32C3开发的简易IO调试设备》具有广泛的市场应用前景。它可以满足不同领域的需求,为电子产品调试、物联网设备开发、教育培训、嵌入式系统开发和DIY爱好者等提供了简单、便捷、高效的解决方案。

  • 3. 项目设计思路

项目地址:Scheme-it | 嵌入式快速调试设备 | DigiKey

得捷电子的Scheme-it工具融合了原理图、框图和流程图绘制等功能,支持多种格式导出。并且,得捷电子提供原理图kicad格式导出的功能,同步导出对应器件的封装,减少查找封装的麻烦。Scheme-it无需专门下载安装,在浏览器在线运行,上手速度很快。这里我非常迅速画了系统的方案框图:

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第2张图片

这里面的外设驱动详细内容见:【Arduino环境下驱动合宙esp32c3单片机基本外设】

  • 4. 项目方案框图和原理图解释

4.1 系统设计流程图

接下来就是一步一个脚印把模块调通,最后进行解耦实验,有机会就用3D打印机打印一个外壳。如系统设计流程图所示

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第3张图片

系统设计流程图是一个用于描述系统设计过程的流程图。在这个流程中,首先进行的是项目立项,然后进入系统设计阶段,包括结构设计和硬件模块设计。在硬件模块设计中,又包括硬件模块设计和软件模块设计。然后进行联合调试,如果调试成功,就进行系统设计修改,如果调试失败,就回到硬件模块设计进行更改,直到调试成功。最后,进行是总结并记录归档。

4.2 电路原理图

这里采用kicad绘制的原理图,这里面的蜂鸣器电路设计有缺陷,因此我加250Ω电阻直接飞线绕过三极管驱动蜂鸣器,我之前画过电路图(设计有诸多不合理,欢迎大家批评指正),但从来都没有打板子,这是我第一次打板子验证项目,非常感谢硬禾给机会,太感动了!

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第4张图片

设计用户操作界面,该设备具备简单易用的操作界面,外加显示屏SSD1306和旋转编码器进行显示和控制,用户后期可进行二次开发WiFi或蓝牙连接电脑或手机监控。
多种数字和模拟信号的输入输出:用户可以选择不同的输入输出模式,并通过设备的操作界面进行设置。 引出了开发板全部可用端口,其中包括GPIO、ADC、UART、IIC、SPI端口。

这里面的外设驱动详细内容见:【Arduino环境下驱动合宙esp32c3单片机基本外设】

  • 5. 设计中用到规定厂商的元器件介绍

这里采用了 乐鑫科技(Espressif)的ESP32-C3-MINI-1-N4,由于之前合宙esp32c3可以等效替代,对此采用这款合宙esp32c3开发板代替,是采用ESP32-C3-MINI-1-N4模组设计的。

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第5张图片

ESP32­C3­MINI­1技术规格书

ESP32-C3 系列芯片

由于项目需要达到300元包邮,所以我选购了Pi400键盘系统

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第6张图片

期待后期有发光发热的地方叫上鹏鹏哦!

  • 6. PCB绘制打板介绍及遇到的问题和解决方法

 6.1 PCB板图

工程整体采用两层板结构;

底层覆铜设计,右边是覆铜效果,左边没有覆铜效果;

采用esp32c3单片机放在中间,底部板载USB供电,靠上设计SSD1306屏幕显示,基本外设左右排开,左边有SPI、舵机端口、ADC和WS2812。右边设计有蜂鸣器和旋转编码器,中间开发板的端口全部引出。

设计的尺寸非常小宽7.37*长8.64,四周设计了立柱。

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第7张图片

6.2 3D封装效果图

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第8张图片

所选封装比较杂乱,偏向传统与现代工业融合

第一次下单 嘉立创返回说我没有阻焊层,修改ganber文件导出后,第二次下单工艺信息,大约5天左右就到啦!国产雄起

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第9张图片

6.3 实物图

打板图

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第10张图片

实物图

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第11张图片

 6.4 遇到的问题

1. 蜂鸣器驱动设计错误,解决办法:直接连接IO口,不过pwm控制效果区别不明显

2. WS2812封装对应错误,解决办法:选择引出的GPIO驱动,完美!

  • 7. 关键代码及说明

总共迭代了四个版本

7.1 版本1.0

是通过ChatGPT生成的,然后结合自己开发的外设调试,搭建了基本框架,可以屏幕显示,有舵机、ws2812和ADC交互控制显示,需要安装以下5个库

  1. #include
  2. #include
  3. #include
  4. #include
  5. #include
// #define ENCODER_DO_NOT_USE_INTERRUPTS
#include 
#include 
#include 
#include 
#include 
#define OLED_CLOCK 5
#define OLED_DATA 4
#define OLED_RESET U8X8_PIN_NONE
#define ENCODER_CLK 7
#define ENCODER_DT 6
#define ENCODER_SW 8
#define SERVO_PIN 19
#define LED_PIN 18
#define NUM_LEDS 4
#define SENSOR_PIN 0



U8G2_SSD1306_128X64_NONAME_F_SW_I2C u8g2(U8G2_R0, /* clock=*/OLED_CLOCK, /* data=*/OLED_DATA, /* reset=*/OLED_RESET);  // ESP32 Thing, pure SW emulated I2C
Encoder encoder(ENCODER_CLK, ENCODER_DT);
// ESP32PWM pwm;
Servo myservo;  // create servo object to control a servo
CRGB leds[NUM_LEDS];
int currentMenu = 0;
int servoAngle = 0;
int ledColorIndex = 0;
int sensorValue = 0;
int encoderButtonState = 0;
long position = 0;
long newPos = 0;

void setup() {
  ESP32PWM::allocateTimer(0);
  ESP32PWM::allocateTimer(1);
  ESP32PWM::allocateTimer(2);
  ESP32PWM::allocateTimer(3);
  myservo.setPeriodHertz(50);             // standard 50 hz servo
  myservo.attach(SERVO_PIN, 1000, 2000);  // attaches the servo on pin 18 to the servo object
  Serial.begin(9600);
  u8g2.begin();
  u8g2.setFont(u8g2_font_ncenB14_tr);
  pinMode(ENCODER_SW, INPUT_PULLUP);
  FastLED.addLeds(leds, NUM_LEDS);
  // pwm.setPeriodHertz(50);
  // pwm.attachServo(SERVO_PIN);
}

void loop() {
  u8g2.clearBuffer();

  switch (currentMenu) {
    case 0:  // Main menu
      u8g2.setCursor(0, 20);
      u8g2.print("1. Servo");
      u8g2.setCursor(0, 40);
      u8g2.print("2. WS2812");
      u8g2.setCursor(0, 60);
      u8g2.print("3. Sensor");
      break;

    case 1:  // Servo menu
      // int servoencoderValue = 0;
      u8g2.setCursor(0, 20);
      u8g2.print("Servo Angle: ");
      u8g2.setCursor(30, 40);
      u8g2.print(servoAngle);

      // Handle servo control
      servoAngle = servoAngle + checkencoder();
      if (servoAngle > 180) {
        servoAngle = 180;
      } else if (servoAngle < 0) {
        servoAngle = 0;
      }
      myservo.write(servoAngle);
      break;

    case 2:  // WS2812 menu
      // int LEDencoderValue = 0;
      u8g2.setCursor(0, 20);
      u8g2.print("LED Color: ");
      u8g2.setCursor(30, 40);
      u8g2.print(ledColorIndex);

      // Handle LED color control
      ledColorIndex = ledColorIndex + checkencoder();
      if (ledColorIndex < 0) {
        ledColorIndex = 0;
      } else if (ledColorIndex > 2) {
        ledColorIndex = 2;
      }
      setLedColor();
      break;

    case 3:  // Sensor menu
      u8g2.setCursor(0, 20);
      u8g2.print("Sensor Value: ");
      u8g2.setCursor(30, 40);
      u8g2.print(sensorValue);

      // Read sensor value
      sensorValue = analogRead(SENSOR_PIN);
      break;
  }

  u8g2.sendBuffer();
  // Handle menu navigation
  encoderButtonState = digitalRead(ENCODER_SW);
  if (encoderButtonState == LOW) {
    delay(50);  // Debounce delay
    encoderButtonState = digitalRead(ENCODER_SW);
    if (encoderButtonState == LOW) {
      currentMenu++;
      if (currentMenu > 3) {
        currentMenu = 0;
      }
      delay(200);  // Debounce delay
    }
  }
}
int checkencoder() {
  newPos = encoder.read();
  Serial.println("newPos:" + String(newPos) + "position:" + String(position));
  delay(1);
  if (newPos > position) {
    position = newPos;
    return 1;
  } else if (newPos < position) {
    position = newPos;
    return -1;
  }

  return 0;
}
void setLedColor() {
  switch (ledColorIndex) {
    case 0:
      leds[0] = CRGB::Red;
      leds[1] = CRGB::Red;
      leds[2] = CRGB::Red;
      leds[3] = CRGB::Red;
      break;

    case 1:
      leds[0] = CRGB::Green;
      leds[1] = CRGB::Green;
      leds[2] = CRGB::Green;
      leds[3] = CRGB::Green;
      break;

    case 2:
      leds[0] = CRGB::Blue;
      leds[1] = CRGB::Blue;
      leds[2] = CRGB::Blue;
      leds[3] = CRGB::Blue;
      break;
  }
  FastLED.show();
}

 7.2 版本1.1

增加了蜂鸣器控制,设计四级菜单,WS2812由三种颜色怎加到10种,解决旋转编码器无法减法控制,添加按键返回功能

// #define ENCODER_DO_NOT_USE_INTERRUPTS
#include 
#include 
#include 
#include 
#include 
#define OLED_CLOCK 5
#define OLED_DATA 4
#define OLED_RESET U8X8_PIN_NONE
#define ENCODER_CLK 7
#define ENCODER_DT 6
#define ENCODER_SW 8
#define SERVO_PIN 19
#define LED_PIN 18
#define NUM_LEDS 4
#define SENSOR_PIN 0
#define SENSOR_PIN2 1
#define BUZZER 13


U8G2_SSD1306_128X64_NONAME_F_SW_I2C u8g2(U8G2_R0, /* clock=*/OLED_CLOCK, /* data=*/OLED_DATA, /* reset=*/OLED_RESET);  // ESP32 Thing, pure SW emulated I2C
// 创建Encoder对象
Encoder myEncoder(ENCODER_CLK, ENCODER_DT);
// ESP32PWM pwm;
Servo myservo;  // create servo object to control a servo
CRGB leds[NUM_LEDS];
int currentMenu = 0;
int servoAngle = 0;
int ledColorIndex = 0;
int sensorValue = 0;
int sensorValue2 = 0;
int BuzzerValue = 128;
int encoderButtonState = 0;
long position = 0;
long newPos = 0;
long oldPosition = 0;
int increment = 0;
int ws = 0;
void setup() {
  myservo.setPeriodHertz(50);             // standard 50 hz servo
  myservo.attach(SERVO_PIN, 1000, 2000);  // attaches the servo on pin 18 to the servo object
  Serial.begin(9600);
  u8g2.begin();
  u8g2.setFont(u8g2_font_ncenB14_tr);
  pinMode(ENCODER_SW, INPUT_PULLUP);
  pinMode(ENCODER_CLK, INPUT_PULLUP);
  pinMode(ENCODER_DT, INPUT_PULLUP);
  pinMode(BUZZER, OUTPUT);
  FastLED.addLeds(leds, NUM_LEDS);
  for (int i = 0; i < NUM_LEDS; i++) {
    leds[i] = getColor(-1);
  }
  FastLED.show();
  // pwm.setPeriodHertz(50);
  // pwm.attachServo(SERVO_PIN);
}

void loop() {
  u8g2.clearBuffer();
  switch (currentMenu) {
    case 0:  // Main menu
      u8g2.setCursor(30, 20);
      u8g2.print("Main menu");
      u8g2.setFont(u8g2_font_ncenB08_tr);
      u8g2.setCursor(0, 40);
      u8g2.print("1. Servo");
      u8g2.setCursor(0, 60);
      u8g2.print("2. WS2812");
      u8g2.setCursor(64, 40);
      u8g2.print("3. Sensor");
      u8g2.setCursor(64, 60);
      u8g2.print("4. Buzzer");
      break;

    case 1:  // Servo menu
      // int servoencoderValue = 0;
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("Servo Angle: ");
      u8g2.setCursor(30, 40);
      u8g2.print(servoAngle);
      u8g2.sendBuffer();
      while (1) {
        if (checkencoder() == true) {
          setservo();
          increment = 0;
        }
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    case 2:  // WS2812 menu
      // int LEDencoderValue = 0;
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("LED Color: ");
      u8g2.setCursor(30, 40);
      u8g2.print(ledColorIndex);
      u8g2.sendBuffer();
      // Handle LED color control
      while (1) {
        if (checkencoder() == true) {
          setLedColor();
          increment = 0;
        }
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    case 3:  // Sensor menu
      u8g2.setFont(u8g2_font_ncenB08_tr);
      u8g2.setCursor(10, 30);
      u8g2.print("Sensor1: ");
      u8g2.setCursor(64, 30);
      u8g2.print(sensorValue);
      u8g2.setCursor(10, 60);
      u8g2.print("Sensor2: ");
      u8g2.setCursor(64, 60);
      u8g2.print(sensorValue2);

      // Read sensor value
      sensorValue = analogRead(SENSOR_PIN);
      sensorValue2 = analogRead(SENSOR_PIN2);
      break;

    case 4:  // Buzzer menu
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("Buzzer Value: ");
      u8g2.setCursor(30, 40);
      u8g2.print(BuzzerValue);
      // Handle Buzzer control
      while (1) {
        if (checkencoder() == true) {
          setbuzzer();
          increment = 0;
        }
        if (checkswitch() == true) {
          break;
        }
      }
      break;
  }
  increment = 0;
  u8g2.sendBuffer();
  // Handle menu navigation
  if (checkswitch() == true) {
    currentMenu++;
    if (currentMenu > 4) {
      currentMenu = 0;
    }
    delay(200);  // Debounce delay
  }
}
bool checkencoder() {
  long newPosition = myEncoder.read();
  if (newPosition != oldPosition) {
    // Serial.println(newPosition + String(";") + oldPosition);
    increment = newPosition - oldPosition;
    oldPosition = newPosition;
    return true;
  }
  return false;
}
bool checkswitch() {
  encoderButtonState = digitalRead(ENCODER_SW);
  if (encoderButtonState == LOW) {
    delay(50);  // Debounce delay
    encoderButtonState = digitalRead(ENCODER_SW);
    if (encoderButtonState == LOW) {
      return true;
    } else {
      return false;
    }
  } else {
    return false;
  }
}
void setLedColor() {
  ledColorIndex = ledColorIndex + increment;
  if (ledColorIndex < 0) {
    ledColorIndex = 0;
  } else if (ledColorIndex > 10) {
    ledColorIndex = 10;
  }
  u8g2.setCursor(30, 40);
  u8g2.print(ledColorIndex);
  u8g2.sendBuffer();
  for (int i = 0; i < NUM_LEDS; i++) {
    leds[i] = getColor(ledColorIndex);
  }
  FastLED.show();
  delay(1);
}
void setservo() {
  servoAngle = servoAngle + increment*3;
  if (servoAngle > 180) {
    servoAngle = 180;
  } else if (servoAngle < 0) {
    servoAngle = 0;
  }
  u8g2.setCursor(30, 40);
  u8g2.print(servoAngle);
  u8g2.sendBuffer();
  myservo.write(servoAngle);
}

void setbuzzer() {
  BuzzerValue = BuzzerValue + increment*8;
  if (BuzzerValue > 255) {
    BuzzerValue = 255;
  } else if (BuzzerValue < 0) {
    BuzzerValue = 0;
  }
  u8g2.setCursor(30, 40);
  u8g2.print(BuzzerValue);
  u8g2.sendBuffer();
  analogWrite(BUZZER, BuzzerValue);
}

CRGB getColor(int index) {
  switch (index) {
    case 0:
      return CRGB::Red;
    case 1:
      return CRGB::Green;
    case 2:
      return CRGB::Blue;
    case 3:
      return CRGB::Yellow;
    case 4:
      return CRGB::Magenta;
    case 5:
      return CRGB::Cyan;
    case 6:
      return CRGB::White;
    case 7:
      return CRGB::Purple;
    case 8:
      return CRGB::Orange;
    case 9:
      return CRGB::Pink;
    default:
      return CRGB::Black;
  }
}

 7.3 版本1.2

增加了蓝牙交互,设计五级菜单,通过蓝牙上传设备状态信息,并且可接收手机端数据,但未完成控制设备。值得注意这个版本最稳定

// #define ENCODER_DO_NOT_USE_INTERRUPTS
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define OLED_CLOCK 5
#define OLED_DATA 4
#define OLED_RESET U8X8_PIN_NONE
#define ENCODER_CLK 7
#define ENCODER_DT 6
#define ENCODER_SW 8
#define SERVO_PIN 19
#define LED_PIN 18
#define NUM_LEDS 4
#define SENSOR_PIN 0
#define SENSOR_PIN2 1
#define BUZZER 13
#define SERVICE_UUID "6E400001-B5A3-F393-E0A9-E50E24DCCA9E"  // UART service UUID
#define CHARACTERISTIC_UUID_RX "6E400002-B5A3-F393-E0A9-E50E24DCCA9E"
#define CHARACTERISTIC_UUID_TX "6E400003-B5A3-F393-E0A9-E50E24DCCA9E"
//创建Bluetooth对象
BLECharacteristic *pCharacteristic;
//创建SSD1306屏幕对象
U8G2_SSD1306_128X64_NONAME_F_SW_I2C u8g2(U8G2_R0, /* clock=*/OLED_CLOCK, /* data=*/OLED_DATA, /* reset=*/OLED_RESET);  // ESP32 Thing, pure SW emulated I2C
// 创建Encoder对象
Encoder myEncoder(ENCODER_CLK, ENCODER_DT);
// ESP32PWM pwm;
Servo myservo;  // create servo object to control a servo
CRGB leds[NUM_LEDS];
int currentMenu = 0;
int servoAngle = 0;
int ledColorIndex = 0;
int sensorValue = 0;
int sensorValue2 = 0;
int BuzzerValue = 128;
int encoderButtonState = 0;
long position = 0;
long newPos = 0;
long oldPosition = 0;
int increment = 0;
bool deviceConnected = false;
char BLEbuf[256] = { 0 };
uint32_t cnt = 0;
String message_c;
char *message;
// const char *message1;
class MyServerCallbacks : public BLEServerCallbacks {
  void onConnect(BLEServer *pServer) {
    deviceConnected = true;
  };

  void onDisconnect(BLEServer *pServer) {
    deviceConnected = false;
  }
};

class MyCallbacks : public BLECharacteristicCallbacks {
  void onWrite(BLECharacteristic *pCharacteristic) {
    std::string rxValue = pCharacteristic->getValue();

    if (rxValue.length() > 0) {
      Serial.print("------>Received Value: ");

      for (int i = 0; i < rxValue.length(); i++) {
        Serial.print(rxValue[i]);
      }
      Serial.println();
    }
  }
};


void setup() {
  myservo.setPeriodHertz(50);             // standard 50 hz servo
  myservo.attach(SERVO_PIN, 1000, 2000);  // attaches the servo on pin 18 to the servo object
  Serial.begin(115200);
  u8g2.begin();
  u8g2.clearDisplay();
  pinMode(ENCODER_SW, INPUT_PULLUP);
  pinMode(ENCODER_CLK, INPUT_PULLUP);
  pinMode(ENCODER_DT, INPUT_PULLUP);
  pinMode(BUZZER, OUTPUT);
  FastLED.addLeds(leds, NUM_LEDS);
  for (int i = 0; i < NUM_LEDS; i++) {
    leds[i] = getColor(-1);
  }
  FastLED.show();
  // Create the BLE Device
  BLEDevice::init("ESP32 BLE vor");
  // 创建蓝牙服务器
  BLEServer *pServer = BLEDevice::createServer();
  pServer->setCallbacks(new MyServerCallbacks());
  // // 创建广播服务的UUID
  BLEService *pService = pServer->createService(SERVICE_UUID);
  // 创建广播服务的UUID
  pCharacteristic = pService->createCharacteristic(CHARACTERISTIC_UUID_TX, BLECharacteristic::PROPERTY_NOTIFY);
  pCharacteristic->addDescriptor(new BLE2902());
  BLECharacteristic *pCharacteristic = pService->createCharacteristic(CHARACTERISTIC_UUID_RX, BLECharacteristic::PROPERTY_WRITE);
  pCharacteristic->setCallbacks(new MyCallbacks());
  // 开始蓝牙服务
  pService->start();
  // 开始广播
  pServer->getAdvertising()->start();
  Serial.println("Waiting a client connection to notify...");
}

void loop() {
  u8g2.clearBuffer();
  switch (currentMenu) {
    case 0:  // Main menu
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(7, 22);
      u8g2.print("Main menu");
      u8g2.setFont(u8g2_font_ncenB08_tr);
      u8g2.setCursor(0, 40);
      u8g2.print("1. Servo");
      u8g2.setCursor(0, 60);
      u8g2.print("2. WS2812");
      u8g2.setCursor(64, 40);
      u8g2.print("3. Sensor");
      u8g2.setCursor(64, 60);
      u8g2.print("4. Buzzer");
      break;

    case 1:  // Servo menu
      // int servoencoderValue = 0;
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("Servo Angle: ");
      u8g2.setCursor(30, 40);
      u8g2.print(servoAngle);
      u8g2.sendBuffer();
      while (1) {
        if (checkencoder() == true) {
          setservo();
          increment = 0;
        }
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    case 2:  // WS2812 menu
      // int LEDencoderValue = 0;
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("LED Color: ");
      u8g2.setCursor(30, 40);
      u8g2.print(ledColorIndex);
      u8g2.sendBuffer();
      // Handle LED color control
      while (1) {
        if (checkencoder() == true) {
          setLedColor();
          increment = 0;
        }
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    case 3:  // Sensor menu
      u8g2.setFont(u8g2_font_ncenB08_tr);
      u8g2.setCursor(10, 30);
      u8g2.print("Sensor1: ");
      u8g2.setCursor(64, 30);
      u8g2.print(sensorValue);
      u8g2.setCursor(10, 60);
      u8g2.print("Sensor2: ");
      u8g2.setCursor(64, 60);
      u8g2.print(sensorValue2);

      // Read sensor value
      sensorValue = analogRead(SENSOR_PIN);
      sensorValue2 = analogRead(SENSOR_PIN2);
      break;

    case 4:  // Buzzer menu
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("Buzzer Value: ");
      u8g2.setCursor(30, 40);
      u8g2.print(BuzzerValue);
      // Handle Buzzer control
      while (1) {
        if (checkencoder() == true) {
          setbuzzer();
          increment = 0;
        }
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    case 5:  // Blue uart
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("Blue uart : ");
      u8g2.setFont(u8g2_font_ncenB08_tr);
      u8g2.setCursor(0, 40);
      u8g2.print(BuzzerValue);
      // Handle Buzzer control
      while (1) {
        setbluetooth();
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    default:
      break;
  }
  increment = 0;
  u8g2.sendBuffer();
  // Handle menu navigation
  if (checkswitch() == true) {
    currentMenu++;
    if (currentMenu > 5) {
      currentMenu = 0;
    }
    delay(200);  // Debounce delay
  }
}
bool checkencoder() {
  long newPosition = myEncoder.read();
  if (newPosition != oldPosition) {
    // Serial.println(newPosition + String(";") + oldPosition);
    increment = newPosition - oldPosition;
    oldPosition = newPosition;
    return true;
  }
  return false;
}
bool checkswitch() {
  encoderButtonState = digitalRead(ENCODER_SW);
  if (encoderButtonState == LOW) {
    delay(50);  // Debounce delay
    encoderButtonState = digitalRead(ENCODER_SW);
    if (encoderButtonState == LOW) {
      return true;
    } else {
      return false;
    }
  } else {
    return false;
  }
}
void setLedColor() {
  ledColorIndex = ledColorIndex + increment;
  if (ledColorIndex < 0) {
    ledColorIndex = 0;
  } else if (ledColorIndex > 10) {
    ledColorIndex = 10;
  }
  u8g2.setCursor(30, 40);
  u8g2.print(ledColorIndex);
  u8g2.sendBuffer();
  for (int i = 0; i < NUM_LEDS; i++) {
    leds[i] = getColor(ledColorIndex);
  }
  FastLED.show();
  delay(1);
}
void setservo() {
  servoAngle = servoAngle + increment * 3;
  if (servoAngle > 180) {
    servoAngle = 180;
  } else if (servoAngle < 0) {
    servoAngle = 0;
  }
  u8g2.setCursor(30, 40);
  u8g2.print(servoAngle);
  u8g2.sendBuffer();
  myservo.write(servoAngle);
}

void setbuzzer() {
  BuzzerValue = BuzzerValue + increment * 8;
  if (BuzzerValue > 255) {
    BuzzerValue = 255;
  } else if (BuzzerValue < 0) {
    BuzzerValue = 0;
  }
  u8g2.setCursor(30, 40);
  u8g2.print(BuzzerValue);
  u8g2.sendBuffer();
  analogWrite(BUZZER, BuzzerValue);
}

void setbluetooth() {
  if (deviceConnected) {  //设备连接后,每秒钟发送txValue。
    memset(BLEbuf, 0, 32);
    message_c = "s "+String(servoAngle)+" w"+String(ledColorIndex)+" s"+String(analogRead(SENSOR_PIN))+"s"+String(analogRead(SENSOR_PIN2))+"b"+String(BuzzerValue)+"\n";
    char* p = const_cast(message_c.c_str());
    memcpy(BLEbuf, p, 32);
    pCharacteristic->setValue(BLEbuf);

    pCharacteristic->notify();  // Send the value to the app!
    Serial.print("*** Sent Value: ");
    Serial.print(BLEbuf);
    Serial.println(" ***");
    // sensorValue = analogRead(SENSOR_PIN);
    // sensorValue2 = analogRead(SENSOR_PIN2);
    // memset(BLEbuf, 0, 256);
    // // sprintf(message, "S%dW%dS%dS%dB%d", servoAngle, ledColorIndex, sensorValue, sensorValue2, BuzzerValue);
    // sprintf(message, "S%dW%d", servoAngle, ledColorIndex);
    // // message_c = message;
    // // char* p = const_cast(message.c_str());
    // // message1 = message;
    // memcpy(BLEbuf, message, 256);
    // // memcpy(BLEbuf, message_c, 32);
    // pCharacteristic->setValue(BLEbuf);
    // pCharacteristic->notify();  // Send the value to the app!
    // delay(10);
    u8g2.setCursor(0, 40);
    u8g2.print(BLEbuf);
    // // u8g2.setCursor(0, 60);
    // // u8g2.print(message_c.substring(15, 32));
    u8g2.sendBuffer();
    // Serial.println("Sent Value:" + String(BLEbuf));
    delay(100);
  }
}

CRGB getColor(int index) {
  switch (index) {
    case 0:
      return CRGB::Red;
    case 1:
      return CRGB::Green;
    case 2:
      return CRGB::Blue;
    case 3:
      return CRGB::Yellow;
    case 4:
      return CRGB::Magenta;
    case 5:
      return CRGB::Cyan;
    case 6:
      return CRGB::White;
    case 7:
      return CRGB::Purple;
    case 8:
      return CRGB::Orange;
    case 9:
      return CRGB::Pink;
    default:
      return CRGB::Black;
  }
}

 7.4 版本1.3

设计了两个线程,完成了实时的蓝牙交互,不过ws2812控制不稳定。推荐版本1.2

// #define ENCODER_DO_NOT_USE_INTERRUPTS
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define OLED_CLOCK 5
#define OLED_DATA 4
#define OLED_RESET U8X8_PIN_NONE
#define ENCODER_CLK 7
#define ENCODER_DT 6
#define ENCODER_SW 8
#define SERVO_PIN 19
#define LED_PIN 18
#define NUM_LEDS 4
#define SENSOR_PIN 0
#define SENSOR_PIN2 1
#define BUZZER 13
#define SERVICE_UUID "6E400001-B5A3-F393-E0A9-E50E24DCCA9E"  // UART service UUID
#define CHARACTERISTIC_UUID_RX "6E400002-B5A3-F393-E0A9-E50E24DCCA9E"
#define CHARACTERISTIC_UUID_TX "6E400003-B5A3-F393-E0A9-E50E24DCCA9E"
//创建Bluetooth对象
BLECharacteristic *pCharacteristic;
//创建SSD1306屏幕对象
U8G2_SSD1306_128X64_NONAME_F_SW_I2C u8g2(U8G2_R0, /* clock=*/OLED_CLOCK, /* data=*/OLED_DATA, /* reset=*/OLED_RESET);  // ESP32 Thing, pure SW emulated I2C
// 创建Encoder对象
Encoder myEncoder(ENCODER_CLK, ENCODER_DT);
// ESP32PWM pwm;
Servo myservo;  // create servo object to control a servo
CRGB leds[NUM_LEDS];
int currentMenu = 0;
int servoAngle = 0;
int ledColorIndex = 0;
int sensorValue = 0;
int sensorValue2 = 0;
int BuzzerValue = 128;
int encoderButtonState = 0;
long position = 0;
long newPos = 0;
long oldPosition = 0;
int increment = 0;
bool deviceConnected = false;
char BLEbuf[256] = { 0 };
uint32_t cnt = 0;
String message_c;
char *message;
// const char *message1;
class MyServerCallbacks : public BLEServerCallbacks {
  void onConnect(BLEServer *pServer) {
    deviceConnected = true;
  };

  void onDisconnect(BLEServer *pServer) {
    deviceConnected = false;
  }
};

class MyCallbacks : public BLECharacteristicCallbacks {
  void onWrite(BLECharacteristic *pCharacteristic) {
    std::string rxValue = pCharacteristic->getValue();

    if (rxValue.length() > 0) {
      Serial.print("------>Received Value: ");

      for (int i = 0; i < rxValue.length(); i++) {
        Serial.print(rxValue[i]);
      }
      Serial.println();
    }
  }
};


void appCpuLoop(void *pvParameters) {
  while (true) {
    if (currentMenu != 5) {
      memset(BLEbuf, 0, 32);
      message_c = "s " + String(servoAngle) + "w" + String(ledColorIndex) + " s" + String(analogRead(SENSOR_PIN)) + "s" + String(analogRead(SENSOR_PIN2)) + "b" + String(BuzzerValue) + "\r\n";
      char *p = const_cast(message_c.c_str());
      memcpy(BLEbuf, p, 32);
      pCharacteristic->setValue(BLEbuf);

      pCharacteristic->notify();  // Send the value to the app!
      Serial.print("*** Sent Value: ");
      Serial.print(BLEbuf);
      Serial.println(" ***");
      delay(700);
    }
    delay(300);
  }

  vTaskDelete(NULL);
}

void setup() {
  myservo.setPeriodHertz(50);             // standard 50 hz servo
  myservo.attach(SERVO_PIN, 1000, 2000);  // attaches the servo on pin 18 to the servo object
  Serial.begin(115200);
  u8g2.begin();
  u8g2.clearDisplay();
  pinMode(ENCODER_SW, INPUT_PULLUP);
  pinMode(ENCODER_CLK, INPUT_PULLUP);
  pinMode(ENCODER_DT, INPUT_PULLUP);
  pinMode(BUZZER, OUTPUT);
  FastLED.addLeds(leds, NUM_LEDS);
  for (int i = 0; i < NUM_LEDS; i++) {
    leds[i] = getColor(-1);
  }
  FastLED.show();
  // Create the BLE Device
  BLEDevice::init("ESP32 BLE vor");
  // 创建蓝牙服务器
  BLEServer *pServer = BLEDevice::createServer();
  pServer->setCallbacks(new MyServerCallbacks());
  // // 创建广播服务的UUID
  BLEService *pService = pServer->createService(SERVICE_UUID);
  // 创建广播服务的UUID
  pCharacteristic = pService->createCharacteristic(CHARACTERISTIC_UUID_TX, BLECharacteristic::PROPERTY_NOTIFY);
  pCharacteristic->addDescriptor(new BLE2902());
  BLECharacteristic *pCharacteristic = pService->createCharacteristic(CHARACTERISTIC_UUID_RX, BLECharacteristic::PROPERTY_WRITE);
  pCharacteristic->setCallbacks(new MyCallbacks());
  // 开始蓝牙服务
  pService->start();
  // 开始广播
  pServer->getAdvertising()->start();
  Serial.println("Waiting a client connection to notify...");
  xTaskCreatePinnedToCore(appCpuLoop,      //具体实现的函数
                          "APP_CPU_LOOP",  //任务名称
                          8192,            //堆栈大小
                          NULL,            //输入参数
                          1,               //任务优先级
                          NULL,            //
                          1                //核心  0\1
  );
}

void loop() {
  u8g2.clearBuffer();
  switch (currentMenu) {
    case 0:  // Main menu
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(7, 22);
      u8g2.print("Main menu");
      u8g2.setFont(u8g2_font_ncenB08_tr);
      u8g2.setCursor(0, 40);
      u8g2.print("1. Servo");
      u8g2.setCursor(0, 60);
      u8g2.print("2. WS2812");
      u8g2.setCursor(64, 40);
      u8g2.print("3. Sensor");
      u8g2.setCursor(64, 60);
      u8g2.print("4. Buzzer");
      break;

    case 1:  // Servo menu
      // int servoencoderValue = 0;
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("Servo Angle: ");
      u8g2.setCursor(30, 40);
      u8g2.print(servoAngle);
      u8g2.sendBuffer();
      while (1) {
        if (checkencoder() == true) {
          setservo();
          increment = 0;
        }
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    case 2:  // WS2812 menu
      // int LEDencoderValue = 0;
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("LED Color: ");
      u8g2.setCursor(30, 40);
      u8g2.print(ledColorIndex);
      u8g2.sendBuffer();
      // Handle LED color control
      while (1) {
        if (checkencoder() == true) {
          setLedColor();
          increment = 0;
        }
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    case 3:  // Sensor menu
      u8g2.setFont(u8g2_font_ncenB08_tr);
      u8g2.setCursor(10, 30);
      u8g2.print("Sensor1: ");
      u8g2.setCursor(64, 30);
      u8g2.print(sensorValue);
      u8g2.setCursor(10, 60);
      u8g2.print("Sensor2: ");
      u8g2.setCursor(64, 60);
      u8g2.print(sensorValue2);

      // Read sensor value
      sensorValue = analogRead(SENSOR_PIN);
      sensorValue2 = analogRead(SENSOR_PIN2);
      break;

    case 4:  // Buzzer menu
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("Buzzer Value: ");
      u8g2.setCursor(30, 40);
      u8g2.print(BuzzerValue);
      // Handle Buzzer control
      while (1) {
        if (checkencoder() == true) {
          setbuzzer();
          increment = 0;
        }
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    case 5:  // Blue uart
      u8g2.setFont(u8g2_font_ncenB14_tr);
      u8g2.setCursor(0, 20);
      u8g2.print("Blue uart : ");
      u8g2.setFont(u8g2_font_ncenB08_tr);
      u8g2.setCursor(0, 40);
      u8g2.print(BuzzerValue);
      // Handle Buzzer control
      while (1) {
        setbluetooth();
        if (checkswitch() == true) {
          break;
        }
      }
      break;

    default:
      break;
  }
  increment = 0;
  u8g2.sendBuffer();
  // Handle menu navigation
  if (checkswitch() == true) {
    currentMenu++;
    if (currentMenu > 5) {
      currentMenu = 0;
    }
    delay(200);  // Debounce delay
  }
}
bool checkencoder() {
  long newPosition = myEncoder.read();
  if (newPosition != oldPosition) {
    // Serial.println(newPosition + String(";") + oldPosition);
    increment = newPosition - oldPosition;
    oldPosition = newPosition;
    return true;
  }
  return false;
}
bool checkswitch() {
  encoderButtonState = digitalRead(ENCODER_SW);
  if (encoderButtonState == LOW) {
    delay(50);  // Debounce delay
    encoderButtonState = digitalRead(ENCODER_SW);
    if (encoderButtonState == LOW) {
      return true;
    } else {
      return false;
    }
  } else {
    return false;
  }
}
void setLedColor() {
  ledColorIndex = ledColorIndex + increment;
  if (ledColorIndex < 0) {
    ledColorIndex = 0;
  } else if (ledColorIndex > 10) {
    ledColorIndex = 10;
  }
  u8g2.setCursor(30, 40);
  u8g2.print(ledColorIndex);
  u8g2.sendBuffer();
  for (int i = 0; i < NUM_LEDS; i++) {
    leds[i] = getColor(ledColorIndex);
  }
  FastLED.show();
  delay(1);
}
void setservo() {
  servoAngle = servoAngle + increment * 3;
  if (servoAngle > 180) {
    servoAngle = 180;
  } else if (servoAngle < 0) {
    servoAngle = 0;
  }
  u8g2.setCursor(30, 40);
  u8g2.print(servoAngle);
  u8g2.sendBuffer();
  myservo.write(servoAngle);
}

void setbuzzer() {
  BuzzerValue = BuzzerValue + increment * 8;
  if (BuzzerValue > 255) {
    BuzzerValue = 255;
  } else if (BuzzerValue < 0) {
    BuzzerValue = 0;
  }
  u8g2.setCursor(30, 40);
  u8g2.print(BuzzerValue);
  u8g2.sendBuffer();
  analogWrite(BUZZER, BuzzerValue);
}

void setbluetooth() {
  if (deviceConnected) {  //设备连接后,每秒钟发送txValue。
    memset(BLEbuf, 0, 32);
    message_c = "s " + String(servoAngle) + "w" + String(ledColorIndex) + " s" + String(analogRead(SENSOR_PIN)) + "s" + String(analogRead(SENSOR_PIN2)) + "b" + String(BuzzerValue) + "\r\n";
    char *p = const_cast(message_c.c_str());
    memcpy(BLEbuf, p, 32);
    pCharacteristic->setValue(BLEbuf);

    pCharacteristic->notify();  // Send the value to the app!
    Serial.print("*** Sent Value: ");
    Serial.print(BLEbuf);
    Serial.println(" ***");
    // sensorValue = analogRead(SENSOR_PIN);
    // sensorValue2 = analogRead(SENSOR_PIN2);
    // memset(BLEbuf, 0, 256);
    // // sprintf(message, "S%dW%dS%dS%dB%d", servoAngle, ledColorIndex, sensorValue, sensorValue2, BuzzerValue);
    // sprintf(message, "S%dW%d", servoAngle, ledColorIndex);
    // // message_c = message;
    // // char* p = const_cast(message.c_str());
    // // message1 = message;
    // memcpy(BLEbuf, message, 256);
    // // memcpy(BLEbuf, message_c, 32);
    // pCharacteristic->setValue(BLEbuf);
    // pCharacteristic->notify();  // Send the value to the app!
    // delay(10);
    u8g2.setCursor(0, 40);
    u8g2.print(BLEbuf);
    // // u8g2.setCursor(0, 60);
    // // u8g2.print(message_c.substring(15, 32));
    u8g2.sendBuffer();
    // Serial.println("Sent Value:" + String(BLEbuf));
    delay(100);
  }
}

CRGB getColor(int index) {
  switch (index) {
    case 0:
      return CRGB::Red;
    case 1:
      return CRGB::Green;
    case 2:
      return CRGB::Blue;
    case 3:
      return CRGB::Yellow;
    case 4:
      return CRGB::Magenta;
    case 5:
      return CRGB::Cyan;
    case 6:
      return CRGB::White;
    case 7:
      return CRGB::Purple;
    case 8:
      return CRGB::Orange;
    case 9:
      return CRGB::Pink;
    default:
      return CRGB::Black;
  }
}
  • 8. 功能展示及说明

8.1 主菜单显示

主菜单显示,所有设备初始化,舵机归位,灯灭,蜂鸣器静音

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第12张图片

8.2 舵机控制

舵机显示60度位置,屏幕同步数值

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第13张图片

8.3 WS2812控制

WS2812显示蓝色灯,屏幕同步数值

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第14张图片

8.4 ADC读取

实时读取光敏ADC,屏幕同步数值

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第15张图片

8.5 蜂鸣器PWM

蜂鸣器输出PWM,屏幕同步数值

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第16张图片

8.6 蓝牙交互

手机连接ESP32 BLE vor蓝牙,发送数据

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第17张图片

 屏幕读取状态

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第18张图片

 手机实时接收设备信息

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第19张图片

 电脑串口显示设备状态和接收手机数据

FastBond2阶段2——基于ESP32C3开发的简易IO调试设备_第20张图片

  • 9总结

这是我第四次参加嵌入式相关的网上比赛活动

  • 第一次是RT-Thread的【基于RT-Thread+RA6M4的智能鱼缸系统设计之鱼我所欲也】活动,作品是2022年暑假做的获得第六名,还是比较开心!
  • 第二次2023年寒假做的是【基于MAX7800羽毛板语音控制ESP8266小车】,成绩还没有出来,第七名。
  • 第三次2023年春做的【基于腾讯云的CH32V307开发板远程机械臂小车】,由于图床引用CSDN导致最后评审没有显示出来,最后获得安慰奖

这次最大的收获是第一次实现了PCB板设计、制作和调试全流程,加深了对手机蓝牙双向通信,对esp32国产单片机更有信心!
这次最大的遗憾是没有加入蓝牙控制程序,相信大家自己解决哒。

建议:

  1. 希望得捷电子优化国内访问网站浏览和提高scheme-it工具设计水平;
  2. 期待硬禾联合各大平台推出更多有质量有意义持续性的创客活动!

非常感谢硬禾联合得捷电子官方组织的FastBond2活动,大家都为这个国内嵌入式生态出一份力,只要努力认真做了都会有所收获,期盼这些作品在将来某一天为构建美好未来贡献一份微博之力!
我后期会持续更新我测评的一系列国内开发板测评,并且作为宣传大使努力鼓励大家有所获参加有质量的硬禾活动每天都一点点结合实际需求联动丰富生活,从而实现对外部世界进行充分的感知,尽最大努力认识这个有机与无机的环境,科学地合理地进行创作和发挥效益,然后为人类社会发展贡献一点微薄之力。
再次非常感谢硬禾的Lucia支持等等期待这一次的成绩哟!
参考文献:

FastBond2阶段1——基于ESP32C3开发的简易IO调试设备 - 电子森林 (eetree.cn)

【esp32c3配置arduino IDE教程】-CSDN博客

【Arduino环境下驱动合宙esp32c3单片机基本外设】-CSDN博客

你可能感兴趣的:(arduino学习,单片机,FastBond2,esp32c3,arduino,简易IO调试设备)