粒子群算法的寻优算法——非线性函数极值寻优 实验体会

文章目录

    • 一、粒子算法的概述
    • 二、粒子算法的步骤
        • 1. pso算法c1、c2、w的组合测试:
        • 2.pso算法dim与sizepop的组合测试:

一、粒子算法的概述

粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。试想一下枚举法,假设问题的解空间很小,比如一个函数 y = x^2 ,解空间在[-1,1],现在求这个函数的最小值,我们完全可以使用枚举法,比如在这里,在解空间[-1,1]上,取1000等分,也就是步长为0.002,生成1000个x值,然后代入函数中,找到这1000个最小的y就可以了。然而实际情况不是这样的,比如为什么选1000等分,不是1w,10w等分,很显然等分的越大,计算量也就越大,带来的解当然也就越精确,那么实际问题中如何去平衡这两点呢?也就是既要计算量小(速度快),也要准确(精度高),这就是智能算法的来源了,一般的智能算法基本上都是这样的,在很大的搜索空间上,即保证了速度快,也能比较好的找到最优解。
粒子群算法(也称PSO算法),也是一种进化算法,模拟生物群体的觅食行为,是一种群体智能算法,类似的算法想遗传算法,模拟退火算法等等。PSO是通过当前已知种群寻找到的所有解来决定新的解的寻找方向,也就是新解的生成方式依赖于这些种群历史上寻找的所有解。
开始随机生成一堆种群,那么这些种群之间的每个个体可以相互交流,比如下一时刻,A告诉B说我的解比你好,那么B就往A那个地方飞,也就是B的解朝着A的解方向变化,当然所有粒子间都这样操作,想想一旦粒子群中间有一个粒子找到了一个最优解,是不是所有的粒子会一窝蜂朝着这个方向而去了,而在这个去的过程中,万一某个粒子找到了一个更好的解,那它还会走吗?不会了,它就告诉剩下的所有粒子说我的解更好呀,大家快来呀(很无私的),然后所有粒子又一窝蜂的照着这个粒子方向前进,当然在这个前进的过程中可能又会产生新的解,就这样一步步的迭代,最终慢慢的趋近于一个最优解,这个解是不是全局最优解,不知道,可能是,也可能不是,取决于原始问题的复杂程度,也取决于粒子前进的多少等等。
粒子群算法相对于其他算法来说还是有很多优点的,典型的就是计算速度很快,在每次迭代时,所有粒子同时迭代,是一种并行计算方式,而且粒子的更新方式简单,朝着一个优秀解方向更新。这个优秀解包括两个部分:
1)一个是朝着自己在迭代的历史上找到的个体最优解gbest前进
2)一个是朝着群体在得带历史上找到的全体最优解zbest前进
现在还有一个问题就是每次迭代的时候更新多少呢?也就是自变量的增加步长了,我们用一个速度量V来表示,也就是每个粒子的更新速度了,公式化的表示就是这样的:

你可能感兴趣的:(粒子群算法的寻优算法——非线性函数极值寻优 实验体会)