t2vec 辅助笔记:evaluate.py

1 evaluate

import torch
import torch.nn as nn
from models import EncoderDecoder
from data_utils import DataOrderScaner
import os, h5py
import constants

def evaluate(src, model, max_length):
    """
    evaluate one source sequence
    """

    m0, m1 = model
    #将模型参数model解构为m0(编码器-解码器模型)和m1(线性层加Softmax层)

    length = len(src)
    src = torch.LongTensor(src)
    #获取源序列的长度,并将其转换为LongTensor

    ## (seq_len, 1)
    src = src.view(-1, 1)

    #(1,1)
    length = torch.LongTensor([[length]])

    encoder_hn, H = m0.encoder(src, length)
    #获取encoder的隐藏状态和输出

    h = m0.encoder_hn2decoder_h0(encoder_hn)
    #将encoder的隐藏状态转化为decoder的隐藏状态

    ## running the decoder step by step with BOS as input
    input = torch.LongTensor([[constants.BOS]])
    
    trg = []
    #存储预测的目标序列

    for _ in range(max_length):
        ## `h` is updated for next iteration
        o, h = m0.decoder(input, h, H)
        #使用当前的输入和隐藏状态来获取解码器的输出o和更新后的隐藏状态h

        o = o.view(-1, o.size(2)) ## => (1, hidden_size)
        
        o = m1(o) ## => (1, vocab_size)
        #通过m1获得词汇表大小维度上的对数概率分布

        ## the most likely word
        _, word_id = o.data.topk(1)
        word_id = word_id[0][0]
        #选取概率最高的词汇作为预测的词

        if word_id == constants.EOS:
            break
        #如果预测的词是结束符(EOS),则结束序列生成
        
        trg.append(word_id)
        ## update `input` for next iteration
        input = torch.LongTensor([[word_id]])
    return trg

2 evaluator

def evaluator(args):
    """
    do evaluation interactively
    """
    m0 = EncoderDecoder(args.vocab_size, args.embedding_size,
                        args.hidden_size, args.num_layers,
                        args.dropout, args.bidirectional)
    m1 = nn.Sequential(nn.Linear(args.hidden_size, args.vocab_size),
                       nn.LogSoftmax())
    '''
    创建EncoderDecoder模型实例m0

    创建线性层+LogSoftmax层
    '''

    if os.path.isfile(args.checkpoint):
        print("=> loading checkpoint '{}'".format(args.checkpoint))
        checkpoint = torch.load(args.checkpoint)
        m0.load_state_dict(checkpoint["m0"])
        m1.load_state_dict(checkpoint["m1"])
        #将checkpoint中的模型参数导入

        while True:
            try:
                print("> ", end="")
                src = input()
                # 从用户那里获取输入【一个sequence】

                src = [int(x) for x in src.split()]
                #将输入字符串按空格分割,并将其转换为整数列表

                trg = evaluate(src, (m0, m1), args.max_length)
                #调用evaluate 函数,生成sequence 对应的最大概率单元格id 序列

                print(" ".join(map(str, trg)))
            except KeyboardInterrupt:
                #捕获任何由KeyboardInterrupt(例如用户按下Ctrl+C)引发的异常
                break
    else:
        print("=> no checkpoint found at '{}'".format(args.checkpoint))

3

'''
从文件中读取轨迹数据,然后使用encoder-decoder模型,将结果向量表征保存在HDF5文件中
'''
def t2vec(args):
    "read source sequences from trj.t and write the tensor into file trj.h5"
    m0 = EncoderDecoder(args.vocab_size, args.embedding_size,
                        args.hidden_size, args.num_layers,
                        args.dropout, args.bidirectional)
    '''
    初始化EncoderDecoder(和evaluate不同,这里不用初始化m1)
    '''

    if os.path.isfile(args.checkpoint):
        print("=> loading checkpoint '{}'".format(args.checkpoint))
        checkpoint = torch.load(args.checkpoint)
        m0.load_state_dict(checkpoint["m0"])
        #加载已经训练好的checkpoint

        if torch.cuda.is_available():
            m0.cuda()
        m0.eval()

        vecs = []
        scaner = DataOrderScaner(os.path.join(args.data, "{}-trj.t".format(args.prefix)), args.t2vec_batch)
        scaner.load()
        #从源文件中扫描和加载数据,并以batch的方式返回数据

        i = 0
        while True:
            if i % 100 == 0:
                print("{}: Encoding {} trjs...".format(i, args.t2vec_batch))
            i = i + 1

            src, lengths, invp = scaner.getbatch()
            #不重复地获取一个batch的数据
            #在getbatch操作中哦,对当前批次的 数据进行pad和重新排序的操作
            #invp是为了获取排序前的序列顺序

            if src is None: break
            #src 为None,表示所有轨迹都已经scan了一遍

            if torch.cuda.is_available():
                src, lengths, invp = src.cuda(), lengths.cuda(), invp.cuda()

            h, _ = m0.encoder(src, lengths)
            #使用encoder编码这个,得到相应的hidden state

            ## (num_layers, batch, hidden_size * num_directions)
            h = m0.encoder_hn2decoder_h0(h)
            #将encoder的输出hidden state,转化为decoder的输入hidden state 的格式

            ## (batch, num_layers, hidden_size * num_directions)
            h = h.transpose(0, 1).contiguous()

            ## (batch, *)
            #h = h.view(h.size(0), -1)

            vecs.append(h[invp].cpu().data)
            #通过invp,转换成原来这个batch中序列的顺序

        ## (num_seqs, num_layers, hidden_size * num_directions)
        vecs = torch.cat(vecs)

        ## (num_layers, num_seqs, hidden_size * num_directions)
        vecs = vecs.transpose(0, 1).contiguous()

        path = os.path.join(args.data, "{}-trj.h5".format(args.prefix))
        #创建对应的hdf5文件,存储encoder之后各层的hidden state

        print("=> saving vectors into {}".format(path))
        with h5py.File(path, "w") as f:
            for i in range(m0.num_layers):
                f["layer"+str(i+1)] = vecs[i].squeeze(0).numpy()
                #hdf5每一层存储的是对应层 encoder的hidden state
        
    else:
        print("=> no checkpoint found at '{}'".format(args.checkpoint))

你可能感兴趣的:(pytorch学习,论文笔记,笔记)