python在城市规划中的运用_GitHub - richieBao/python-urbanPlanning: Urban Spatial Data Analysis Method--Python ...

python-urbanPlanning

代码为caDesign(cadesign.cn)设计研究中python知识系统部分即"城市空间数据分析方法——PYTHON语言实现"。

城市的集聚、扩张,对自然土地的侵蚀,以及城市与自然的割裂,使得城市环境恶化,生态问题突出,难以达到宜居的基本要求。空气、噪声污染,绿地碎片化,开敞空间不足,步行空间缺失,城市公共空间的生活品质趋于下降。拥挤、烦躁、疾病、压抑、孤独潜藏于城市繁荣的表面之下。现代城市的发展历经半个多世纪,在解决了人类生存和各类社会问题的同时,也以牺牲环境为代价,积累下各类潜在的城市问题。时至今日,城市环境恶化已经是不得不面对的重大问题,大量相关研究的跟进,都在试图为解决城市问题寻找方法。

网络的发展与城市生活栖息相关数据的大量积累,改变着城市居民生活的方式,也因此可以借助可获取的大数据分析研究城市生活,依此来调控城市有序运作、方便居民生活。以及借助地理信息空间数据和大数据分析城市空间格局,从城市规划、风景园林和建筑领域探索物质空间对城市生活的影响,尤其分析研究如何提升城市开敞空间生活的品质,如何改善恶化的城市生态环境等。

以新的技术、方法来研究城市,需要规划学科自身知识体系的包容和进一步拓展。城市规划、风景园林和建筑领域已经尝试探索数字化规划设计的方法,取得了丰富的成果,然而,当前仍面临很多问题需待解决。虽然早已开始数字化规划设计的探索,但是因为大部分高校常规的教授内容中缺失数字化部分,因此大部分规划设计师并不具备数据分析的能力。而规划教师队伍中具备数据分析能力的人屈指可数,不宜通过增加数据分析相关课程推进教学改革。数据分析与规划设计被视为两个领域的碰撞,然而不具备规划设计背景的数据分析师很难渗入到规划设计领域及进入更深层次的研究,规划设计学科规划设计内容的多变性,方案不断调整的过程需要自身具备数据分析能力的规划设计师。即从常规专业知识出发从事规划设计,并以数据化思维来分析规划内容。面对上述问题,高校以及研究机构,有必要以规划师的角度来推进数字化规划进程。

在规划领域,应用数字化分析来解决相关城市问题,不仅仅依靠大数据分析,还会涉及到当前发展研究的多个领域,例如嵌入式系统实验设备的搭建,复杂系统的应用来分析研究生态平衡问题,参数化技术建立参数关联的模型,以及建筑信息模型的发展,都在以不同的方式切入到规划设计,优化规划设计过程和达到适宜的、有效的规划设计结果,所有这些都是数字相关。在解决城市某类问题时,往往需要综合多种方法,因此数字化的内容自身亦在不断的拓展。也因为其共同基于数字的特点,而能够互相的渗入,形成共同的一个体系。

建立起多个方法领域的数字化规划设计体系,要以编程语言为数据处理的基础,python语言是大数据处理的首选语言,也是相关领域分析平台的脚本语言,因此以python语言为数据分析的基础毋庸置疑。

在“城市空间数据分析方法——PYTHON语言实现”中,试图切入上述所提到的问题:1是,从规划设计师的角度,用数字化的方法来探索解决城市相关问题,尤其城市生态环境的问题;2是,以对程序的详细解释,和相关库的系统梳理,尝试推进城市规划、风景园林和建筑学科自身数字化分析技术的提升;3是,综合应用地理信息系统、大数据分析、复杂系统、参数化、嵌入式系统,建立综合解决城市问题的方法和技术途径。在具体内容上,主要包含3条线索:1是,就城市某一方面的问题,从城市规划、风景园林和建筑专业的角度,以实验研究的方式分章阐述,切实的将数字化技术结合到规划设计中,为规划设计提出新方法、新思路、新探索方向;2是,相关知识的阐述

你可能感兴趣的:(python在城市规划中的运用)