数据脱敏(Data Masking)学习

数据脱敏(Data Masking)

数据脱敏也叫数据的去隐私化,在给定脱敏规则和策略的情况下,对敏感数据比如 手机号、银行卡号 等信息,进行转换或者修改的一种技术手段,防止敏感数据直接在不可靠的环境下使用。
数据脱敏又分为静态数据脱敏(SDM)和 动态数据脱敏(DDM):
SDM适用于将数据抽取出生产环境脱敏后分发至测试、开发、培训、数据分析等场景。
DDM一般用在生产环境,访问敏感数据时实时进行脱敏,因为有时在不同情况下对于同一敏感数据的读取,需要做不同级别的脱敏处理,例如:不同角色、不同权限所执行的脱敏方案会不同。

注意:在抹去数据中的敏感内容同时,也需要保持原有的数据特征、业务规则和数据关联性,保证我们在开发、测试以及数据分析类业务不会受到脱敏的影响,使脱敏前后的数据一致性和有效性。总之一句话:你爱怎么脱就怎么脱,别影响我使用就行。

数据脱敏方案

1、无效化

无效化方案在处理待脱敏的数据时,通过对字段数据值进行 截断、加密、隐藏 等方式让敏感数据脱敏,使其不再具有利用价值。一般采用特殊字符(*等)代替真值,这种隐藏敏感数据的方法简单,但缺点是用户无法得知原数据的格式,如果想要获取完整信息,要让用户授权查询。

2、随机值

随机值替换,字母变为随机字母,数字变为随机数字,文字随机替换文字的方式来改变敏感数据。这种方案的优点在于可以在一定程度上保留原有数据的格式,往往这种方法用户不易察觉的。

3、数据替换

数据替换与前边的无效化方式比较相似,不同的是这里不以特殊字符进行遮挡,而是用一个设定的虚拟值替换真值。比如说我们将手机号统一设置成 “13651300000”。

4、对称加密

对称加密是一种特殊的可逆脱敏方法,通过加密密钥和算法对敏感数据进行加密,密文格式与原始数据在逻辑规则上一致,通过密钥解密可以恢复原始数据,要注意的就是密钥的安全性。

5、平均值

平均值方案经常用在统计场景,针对数值型数据,我们先计算它们的均值,然后使脱敏后的值在均值附近随机分布,从而保持数据的总和不变。

6、偏移和取整

这种方式通过随机移位改变数字数据,偏移取整在保持了数据的安全性的同时保证了范围的大致真实性,比之前几种方案更接近真实数据,在大数据分析场景中意义比较大。

你可能感兴趣的:(数据分析,学习,大数据)