根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符

关于I²C 协议

解释什么是“软件I2C”和“硬件I2C”?
I2C总线有2条信号线:
串行时钟线(SCL)传输CLK信号,一般是主设备向从设备提供
串行数据线(SDA)传输通信数据
I2C属于同步通信,由于输入输出数据均使用一根线,因此通信方向为半双工。I²C 总线是一个多主机的总线。总线通过上拉电阻接到电源。当I2C设备空闲时,会输出高阻态, 而当所有设备都空闲,都输出高阻态时,由上拉电阻把总线拉成高电平。这就是说可以连接多于一个能控制总线的器件到总线。多个主机同时使用总线时,为了防止数据冲突, 会利用仲裁方式决定由哪个设备占用总线。使用I2C传输数据会有一些额外消耗:每发送8bits数据,就需要额外1bit的元数据(ACK或NACK)
发送到SDA 线上的每个字节必须为8 位。每次传输可以发送的字节数量不受限制。每个字节后必须跟一个响应位。首先传输的是数据的最高位(MSB)( 见图6)。 如果从机要完成一些其他功能后(例如一个内部中断服务程序)才能接收或发送下一个完整的数据字节,可以使时钟线SCL 保持低电平迫使主机进入等待状态。当从机准备好接收下一个数据字节并释放时钟线SCL 后,数据传输继续。

在一些情况下,可以用与I²C 总线格式不一样的格式(例如兼容CBUS 的器件)。甚至在传输一个字节时,用这样的地址起始的报文可以通过产生停止条件来终止。此时不会产生响应。
I2C通信双方地位不对等,通信由主设备发起,并主导传输过程,从设备按I2C协议接收主设备发送的数据,并及时给出响应。
主设备、从设备由通信双方决定(I2C协议本身无规定),既能当主设备,也能当从设备(需要软件进行配置)。
主设备负责调度总线,决定某一时刻和哪个从设备通信。同一时刻,I2C总线上只能有一对主设备、从设备通信。
每个I2C从设备在I2C总线通讯中有一个I2C从设备地址,该地址唯一,是从设备的固有属性,通信中主设备通过从设备地址来找到从设备。
IIC协议规定:
第一,每一支IIC设备都有一个唯一的七位设备地址;
第二,数据帧大小为8位的字节;
第三,数据(帧)中的某些数据位用于控制通信的开始、停止、方向(读写)和应答机制。
硬件I2C对应芯片上的I2C外设,有相应I2C驱动电路,其所使用的I2C管脚也是专用的,因而效率要远高于软件模拟的I2C;一般也较为稳定,但是程序较为繁琐。硬件(固件)I2C是直接调用内部寄存器进行配置;而软件I2C是没有寄存器这个概念的。
软件I2C一般是使用GPIO管脚,用软件控制SCL,SDA线输出高低电平,模拟i2c协议的时序。
硬件I2C——STM32的I2C片上外设专门负责实现I2C通讯协议, 只要配置好该外设,它就会自动根据协议要求产生通讯信号,收发数据并缓存起来, CPU只要检测该外设的状态和访问数据寄存器,就能完成数据收发。 这种由硬件外设处理I2C协议的方式减轻了CPU的工作,且使软件设计更加简单。
IIC 数据传输速率有标准模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps)
示意图:
根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第1张图片

使用AHT20读出温湿度

STM32核心板和AHT20的连线:
SCL——B6
GND——GND
SDA——B7
VCC——3.3V
计算温度和湿度根据如下两个公式
c1 = AHT20.HT[0]10010/1024/1024; //湿度
t1 = AHT20.HT[1]20010/1024/1024-500;//温度计算公式
配置I2C
根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第2张图片
打开DMA:
根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第3张图片

配置效果:
根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第4张图片
添加AHT20-21_DEMO_V1_3.c,AHT20-21_DEMO_V1_3.h文件到USER目录下
AHT20-21_DEMO_V1_3.h

#ifndef _AHT20_DEMO_V1_3_
#define _AHT20_DEMO_V1_3_

#include "main.h"  

void Delay_N10us(uint32_t t);//延时函数
void SensorDelay_us(uint32_t t);//延时函数
void Delay_4us(void);		//延时函数
void Delay_5us(void);		//延时函数
void Delay_1ms(uint32_t t);	
void AHT20_Clock_Init(void);		//延时函数
void SDA_Pin_Output_High(void)  ; //将PB15配置为输出 , 并设置为高电平, PB15作为I2C的SDA
void SDA_Pin_Output_Low(void);  //将P15配置为输出  并设置为低电平
void SDA_Pin_IN_FLOATING(void);  //SDA配置为浮空输入
void SCL_Pin_Output_High(void); //SCL输出高电平,P14作为I2C的SCL
void SCL_Pin_Output_Low(void); //SCL输出低电平
void Init_I2C_Sensor_Port(void); //初始化I2C接口,输出为高电平
void I2C_Start(void);		 //I2C主机发送START信号
void AHT20_WR_Byte(uint8_t Byte); //往AHT20写一个字节
uint8_t AHT20_RD_Byte(void);//从AHT20读取一个字节
uint8_t Receive_ACK(void);   //看AHT20是否有回复ACK
void Send_ACK(void)	;	  //主机回复ACK信号
void Send_NOT_ACK(void);	//主机不回复ACK
void Stop_I2C(void);	  //一条协议结束
uint8_t AHT20_Read_Status(void);//读取AHT20的状态寄存器
uint8_t AHT20_Read_Cal_Enable(void);  //查询cal enable位有没有使能
void AHT20_SendAC(void); //向AHT20发送AC命令
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num);
void AHT20_Read_CTdata(uint32_t *ct); //没有CRC校验,直接读取AHT20的温度和湿度数据
void AHT20_Read_CTdata_crc(uint32_t *ct); //CRC校验后,读取AHT20的温度和湿度数据
void AHT20_Init(void);   //初始化AHT20
void JH_Reset_REG(uint8_t addr);///重置寄存器
void AHT20_Start_Init(void);///上电初始化进入正常测量状态
#endif


AHT20-21_DEMO_V1_3.c

/*******************************************/
/*@版权所有:广州奥松电子有限公司          */
/*@作者:温湿度传感器事业部                */
/*@版本:V1.2                              */
/*******************************************/
//#include "main.h" 
#include "AHT20-21_DEMO_V1_3.h" 
#include "gpio.h"
#include "i2c.h"


void Delay_N10us(uint32_t t)//延时函数
{
  uint32_t k;

   while(t--)
  {
    for (k = 0; k < 2; k++);//110
  }
}

void SensorDelay_us(uint32_t t)//延时函数
{
		
	for(t = t-2; t>0; t--)
	{
		Delay_N10us(1);
	}
}

void Delay_4us(void)		//延时函数
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
}
void Delay_5us(void)		//延时函数
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);

}

void Delay_1ms(uint32_t t)		//延时函数
{
   while(t--)
  {
    SensorDelay_us(1000);//延时1ms
  }
}


//void AHT20_Clock_Init(void)		//延时函数
//{
//	RCC_APB2PeriphClockCmd(CC_APB2Periph_GPIOB,ENABLE);
//}

void SDA_Pin_Output_High(void)   //将PB7配置为输出 , 并设置为高电平, PB7作为I2C的SDA
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);
}

void SDA_Pin_Output_Low(void)  //将P7配置为输出  并设置为低电平
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_RESET);
}

void SDA_Pin_IN_FLOATING(void)  //SDA配置为浮空输入
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_INPUT;//浮空
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init( GPIOB,&GPIO_InitStruct);
}


void SCL_Pin_Output_High(void) //SCL输出高电平,P14作为I2C的SCL
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
}

void SCL_Pin_Output_Low(void) //SCL输出低电平
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
}

void Init_I2C_Sensor_Port(void) //初始化I2C接口,输出为高电平
{	
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);

	
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_6;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);
	
}
void I2C_Start(void)		 //I2C主机发送START信号
{
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();
	SensorDelay_us(8);
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
}


void AHT20_WR_Byte(uint8_t Byte) //往AHT20写一个字节
{
	uint8_t Data,N,i;	
	Data=Byte;
	i = 0x80;
	for(N=0;N<8;N++)
	{
		SCL_Pin_Output_Low(); 
		Delay_4us();	
		if(i&Data)
		{
			SDA_Pin_Output_High();
		}
		else
		{
			SDA_Pin_Output_Low();
		}	
			
    SCL_Pin_Output_High();
		Delay_4us();
		Data <<= 1;
		 
	}
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
}	


uint8_t AHT20_RD_Byte(void)//从AHT20读取一个字节
{
		uint8_t Byte,i,a;
	Byte = 0;
	SCL_Pin_Output_Low();
	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	
	for(i=0;i<8;i++)
	{
    SCL_Pin_Output_High();
		
		Delay_5us();
		a=0;
		
		//if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_15)) a=1;
		if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7)) a=1;
		Byte = (Byte<<1)|a;
		
		//SCL_Pin_Output_Low();
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
		Delay_5us();
	}
  SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	return Byte;
}


uint8_t Receive_ACK(void)   //看AHT20是否有回复ACK
{
	uint16_t CNT;
	CNT = 0;
	SCL_Pin_Output_Low();	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);	
	while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7))  && CNT < 100) 
	CNT++;
	if(CNT == 100)
	{
		return 0;
	}
 	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	return 1;
}

void Send_ACK(void)		  //主机回复ACK信号
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	SDA_Pin_Output_Low();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);
}

void Send_NOT_ACK(void)	//主机不回复ACK
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);		
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
    SDA_Pin_Output_Low();
	SensorDelay_us(8);
}

void Stop_I2C(void)	  //一条协议结束
{
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
}

uint8_t AHT20_Read_Status(void)//读取AHT20的状态寄存器
{

	uint8_t Byte_first;	
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	return Byte_first;
}

uint8_t AHT20_Read_Cal_Enable(void)  //查询cal enable位有没有使能
{
	uint8_t val = 0;//ret = 0,
  val = AHT20_Read_Status();
	 if((val & 0x68)==0x08)
		 return 1;
   else  return 0;
 }

void AHT20_SendAC(void) //向AHT20发送AC命令
{

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xac);//0xAC采集命令
	Receive_ACK();
	AHT20_WR_Byte(0x33);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

}

//CRC校验类型:CRC8/MAXIM
//多项式:X8+X5+X4+1
//Poly:0011 0001  0x31
//高位放到后面就变成 1000 1100 0x8c
//C现实代码:
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num)
{
	uint8_t i;
	uint8_t byte;
	uint8_t crc=0xFF;
  for(byte=0; byte<Num; byte++)
  {
    crc^=(message[byte]);
    for(i=8;i>0;--i)
    {
      if(crc&0x80) crc=(crc<<1)^0x31;
      else crc=(crc<<1);
    }
  }
        return crc;
}

void AHT20_Read_CTdata(uint32_t *ct) //没有CRC校验,直接读取AHT20的温度和湿度数据
{
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	 uint32_t RetuData = 0;
	uint16_t cnt = 0;
	AHT20_SendAC();//向AHT10发送AC命令
	Delay_1ms(80);//延时80ms左右	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//直到状态bit[7]为0,表示为空闲状态,若为1,表示忙状态
	{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		 }
	}
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_1th = AHT20_RD_Byte();//状态字,查询到状态为0x98,表示为忙状态,bit[7]为1;状态为0x1C,或者0x0C,或者0x08表示为空闲状态,bit[7]为0
	Send_ACK();
	Byte_2th = AHT20_RD_Byte();//湿度
	Send_ACK();
	Byte_3th = AHT20_RD_Byte();//湿度
	Send_ACK();
	Byte_4th = AHT20_RD_Byte();//湿度/温度
	Send_ACK();
	Byte_5th = AHT20_RD_Byte();//温度
	Send_ACK();
	Byte_6th = AHT20_RD_Byte();//温度
	Send_NOT_ACK();
	Stop_I2C();

	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//湿度
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //温度

}


void AHT20_Read_CTdata_crc(uint32_t *ct) //CRC校验后,读取AHT20的温度和湿度数据
{
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	volatile uint8_t  Byte_7th=0;
	 uint32_t RetuData = 0;
	 uint16_t cnt = 0;
	// uint8_t  CRCDATA=0;
	 uint8_t  CTDATA[6]={0};//用于CRC传递数组
	
	AHT20_SendAC();//向AHT10发送AC命令
	Delay_1ms(80);//延时80ms左右	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//直到状态bit[7]为0,表示为空闲状态,若为1,表示忙状态
	{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		}
	}
	
	I2C_Start();

	AHT20_WR_Byte(0x71);
	Receive_ACK();
	CTDATA[0]=Byte_1th = AHT20_RD_Byte();//状态字,查询到状态为0x98,表示为忙状态,bit[7]为1;状态为0x1C,或者0x0C,或者0x08表示为空闲状态,bit[7]为0
	Send_ACK();
	CTDATA[1]=Byte_2th = AHT20_RD_Byte();//湿度
	Send_ACK();
	CTDATA[2]=Byte_3th = AHT20_RD_Byte();//湿度
	Send_ACK();
	CTDATA[3]=Byte_4th = AHT20_RD_Byte();//湿度/温度
	Send_ACK();
	CTDATA[4]=Byte_5th = AHT20_RD_Byte();//温度
	Send_ACK();
	CTDATA[5]=Byte_6th = AHT20_RD_Byte();//温度
	Send_ACK();
	Byte_7th = AHT20_RD_Byte();//CRC数据
	Send_NOT_ACK();                           //注意: 最后是发送NAK
	Stop_I2C();
	
	if(Calc_CRC8(CTDATA,6)==Byte_7th)
	{
	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//湿度
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //温度
		
	}
	else
	{
		ct[0]=0x00;
		ct[1]=0x00;//校验错误返回值,客户可以根据自己需要更改
	}//CRC数据
}


void AHT20_Init(void)   //初始化AHT20
{	
	Init_I2C_Sensor_Port();
	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xa8);//0xA8进入NOR工作模式
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(10);//延时10ms左右

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xbe);//0xBE初始化命令,AHT20的初始化命令是0xBE,   AHT10的初始化命令是0xE1
	Receive_ACK();
	AHT20_WR_Byte(0x08);//相关寄存器bit[3]置1,为校准输出
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();
	Delay_1ms(10);//延时10ms左右
}
void JH_Reset_REG(uint8_t addr)
{
	
	uint8_t Byte_first,Byte_second,Byte_third;
	I2C_Start();
	AHT20_WR_Byte(0x70);//原来是0x70
	Receive_ACK();
	AHT20_WR_Byte(addr);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(5);//延时5ms左右
	I2C_Start();
	AHT20_WR_Byte(0x71);//
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_ACK();
	Byte_second = AHT20_RD_Byte();
	Send_ACK();
	Byte_third = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	
  Delay_1ms(10);//延时10ms左右
	I2C_Start();
	AHT20_WR_Byte(0x70);///
	Receive_ACK();
	AHT20_WR_Byte(0xB0|addr);
	Receive_ACK();
	AHT20_WR_Byte(Byte_second);
	Receive_ACK();
	AHT20_WR_Byte(Byte_third);
	Receive_ACK();
	Stop_I2C();
	
	Byte_second=0x00;
	Byte_third =0x00;
}

void AHT20_Start_Init(void)
{
	JH_Reset_REG(0x1b);
	JH_Reset_REG(0x1c);
	JH_Reset_REG(0x1e);
}




分别把AHT20-21_DEMO_V1_3.h 放入inc目录 ,AHT20-21_DEMO_V1_3.c放入 src目录
根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第5张图片
修改main.c文件:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dma.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"
#include "AHT20-21_DEMO_V1_3.h" 
#include 
#include 
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
int fputc(int ch,FILE *f)
{
    HAL_UART_Transmit(&huart1,(uint8_t *)&ch,1,0xFFFF);    
		//等待发送结束	
		while(__HAL_UART_GET_FLAG(&huart1,UART_FLAG_TC)!=SET){
		}		

    return ch;
}
volatile int  c1,t1;
uint32_t CT_data[2]={0,0};
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
AHT20_Init();//放在其它之后
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
		AHT20_Read_CTdata_crc(CT_data);  //crc校验后,读取AHT20的温度和湿度数据 
	

		c1 = CT_data[0]*1000/1024/1024;  //计算得到湿度值c1(放大了10倍)
		t1 = CT_data[1]*2000/1024/1024-500;//计算得到温度值t1(放大了10倍)
    printf("湿度:%d%s",c1/10,"%");
	  printf("温度:%d%s\r\n",t1/10,"℃");
		HAL_Delay(3000);
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

运行效果如下:

sensor

OLED屏幕显示

SPI(Serial Peripheral Interface)就是串行外围设备接口。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚。SPI 是一个环形总线结构,由 ss(cs)、sck、sdi、sdo 构成,时序主要是在 sck 的控制下,两个双向移位寄存器进行数据交换。
上升沿发送、下降沿接收、高位先发送。
上升沿到来的时候,sdo 上的电平将被发送到从设备的寄存器中。
下降沿到来的时候,sdi 上的电平将被接收到主设备的寄存器中。

根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第6张图片

接线方式:
根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第7张图片

资料下载链接:http://www.lcdwiki.com/res/Program/OLED/0.96inch/SPI_SSD1306_MSP096X_V1.0/0.96inch_SPI_OLED_Module_SSD1306_MSP096X_V1.0.zip
打开字模软件,先把它设置为字符模式
根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第8张图片
点击齿轮设置字符选项
根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第9张图片
生成字模如下:

	"温",0x00,0x00,0x23,0xF8,0x12,0x08,0x12,0x08,0x83,0xF8,0x42,0x08,0x42,0x08,0x13,0xF8,
  0x10,0x00,0x27,0xFC,0xE4,0xA4,0x24,0xA4,0x24,0xA4,0x24,0xA4,0x2F,0xFE,0x00,0x00,/*"温",0*/
	"度",0x01,0x00,0x00,0x80,0x3F,0xFE,0x22,0x20,0x22,0x20,0x3F,0xFC,0x22,0x20,0x22,0x20,
  0x23,0xE0,0x20,0x00,0x2F,0xF0,0x24,0x10,0x42,0x20,0x41,0xC0,0x86,0x30,0x38,0x0E,/*"度",0*/
	"湿",0x00,0x00,0x27,0xF8,0x14,0x08,0x14,0x08,0x87,0xF8,0x44,0x08,0x44,0x08,0x17,0xF8,
  0x11,0x20,0x21,0x20,0xE9,0x24,0x25,0x28,0x23,0x30,0x21,0x20,0x2F,0xFE,0x00,0x00,/*"湿",0*/
  "℃",0x60,0x00,0x91,0xF4,0x96,0x0C,0x6C,0x04,0x08,0x04,0x18,0x00,0x18,0x00,0x18,0x00,
  0x18,0x00,0x18,0x00,0x18,0x00,0x08,0x00,0x0C,0x04,0x06,0x08,0x01,0xF0,0x00,0x00,/*"℃",0*/
	"%",0x00,0x00,0x18,0x04,0x24,0x08,0x24,0x10,0x24,0x20,0x24,0x40,0x24,0x80,0x19,0x00,
  0x02,0x60,0x04,0x90,0x08,0x90,0x10,0x90,0x20,0x90,0x40,0x90,0x00,0x60,0x00,0x00,/*"%",0*/
   "张",0x01, 0x00, 0xF9, 0x08, 0x09, 0x08, 0x09, 0x10, 0x09, 0x20, 0x79, 0x40, 0x41, 0x00, 0x47, 0xFE,
 0x41, 0x40, 0x79, 0x20, 0x09, 0x20, 0x09, 0x10, 0x09, 0x08, 0x09, 0x44, 0x51, 0x82, 0x21, 0x00,
 "腾",0x02, 0x48, 0x79, 0x48, 0x49, 0x50, 0x4F, 0xFC, 0x48, 0x40, 0x7F, 0xFE, 0x49, 0x10, 0x4A, 0x08,
 0x4D, 0xF6, 0x78, 0x10, 0x49, 0x10, 0x49, 0xFC, 0x48, 0x04, 0x4B, 0xE4, 0x48, 0x14, 0x98, 0x08,

打开OLED_DEMO文件,项目结构如下:
根据I2C协议使用温度传感器,以及用OLED屏幕连接STM32显示字符_第10张图片

设置字符滚动:

OLED_WR_Byte(0x2E,OLED_CMD); //关闭滚动

	OLED_WR_Byte(0x27,OLED_CMD); //水平向左或者右滚动 26/27

	OLED_WR_Byte(0x00,OLED_CMD); //虚拟字节

	OLED_WR_Byte(0x00,OLED_CMD); //起始页 0

	OLED_WR_Byte(0x07,OLED_CMD); //滚动时间间隔

	OLED_WR_Byte(0x02,OLED_CMD); //终止页 2

	OLED_WR_Byte(0x00,OLED_CMD); //虚拟字节

	OLED_WR_Byte(0xFF,OLED_CMD); //虚拟字节

main.c代码:


```c

#include "delay.h"
#include "sys.h"
#include "oled.h"
#include "gui.h"
#include "test.h"
#include "AHT20-21_DEMO_V1_3.h" 
void TEST_MainPage1(int c1,int t1)
{	
		//GUI_ShowString(28,0,"mouerse",16,1);//英文姓名
	  GUI_ShowCHinese(30,0,16,"张腾",1);//中文姓名
	  GUI_ShowString(5,15,"632007090130",16,1);//数字详细
    GUI_ShowCHinese(5,30,16,"湿度",1);
		GUI_ShowCHinese(5,45,16,"温度",1);
		GUI_ShowNum(35,30,c1/10,4,16,1);
	  GUI_ShowCHinese(80,30,16,"%",1);
		GUI_ShowNum(35,45,t1/10,4,16,1);
	  GUI_ShowCHinese(80,45,16,"℃",1);
	  Delay_1ms(1000);
}
volatile int  c1,t1;
uint32_t CT_data[2]={0,0};
u8 temp[10];  
u8 hum[10];
int main(void)
{	
	delay_init();	    	       //延时函数初始化	
	OLED_Init();			         //初始化OLED  
	OLED_Clear(0);             //清屏(全黑)
	
	/***********************************************************************************/
	/**///①刚上电,产品芯片内部就绪需要时间,延时100~500ms,建议500ms
	/***********************************************************************************/
	AHT20_Init();
	Delay_1ms(500);
	/***********************************************************************************/
	/**///②上电第一次发0x71读取状态字,判断状态字是否为0x18,如果不是0x18,进行寄存器初始化
	/***********************************************************************************/
  
	if((AHT20_Read_Status()&0x18)!=0x18)
	{
		AHT20_Start_Init(); //重新初始化寄存器
		Delay_1ms(10);
	}
	
	  
	//NVIC_Configuration(); 	   //设置NVIC中断分组2:2位抢占优先级,2位响应优先级 	
   OLED_WR_Byte(0x2E,OLED_CMD); //关闭滚动

	OLED_WR_Byte(0x26,OLED_CMD); //水平向左或者右滚动 26/27

	OLED_WR_Byte(0x00,OLED_CMD); //虚拟字节

	OLED_WR_Byte(0x00,OLED_CMD); //起始页 0

	OLED_WR_Byte(0x07,OLED_CMD); //滚动时间间隔

	OLED_WR_Byte(0x01,OLED_CMD); //终止页 2

	OLED_WR_Byte(0x00,OLED_CMD); //虚拟字节

	OLED_WR_Byte(0xFF,OLED_CMD); //虚拟字节
	//GUI_ShowCHinese(30,0,16,"木子曦",1);//中文姓名
	while(1) 
	{		
		AHT20_Read_CTdata(CT_data);       //不经过CRC校验,直接读取AHT20的温度和湿度数据    推荐每隔大于1S读一次
    //AHT20_Read_CTdata_crc(CT_data);  //crc校验后,读取AHT20的温度和湿度数据 
	  c1 = CT_data[0]*100*10/1024/1024;  //计算得到湿度值c1(放大了10倍)
	  t1 = CT_data[1]*200*10/1024/1024-500;//计算得到温度值t1(放大了10倍)	
		TEST_MainPage1(c1,t1);         //界面显示
		OLED_WR_Byte(0x2F,OLED_CMD); //开启滚动
	  Delay_1ms(2000);

	}
}
//    TEST_MainPage();         //主界面显示测试
//		OLED_Clear(0); 
//		Test_Color();            //刷屏测试
//		OLED_Clear(0); 
//		Test_Rectangular();      //矩形绘制测试
//		OLED_Clear(0); 
//		Test_Circle();           //圆形绘制测试
//		OLED_Clear(0); 
//		Test_Triangle();         //三角形绘制测试
//		OLED_Clear(0);  
//		TEST_English();          //英文显示测试
//		OLED_Clear(0); 
//		TEST_Number_Character(); //数字和符号显示测试
//		OLED_Clear(0); 
//		TEST_Chinese();          //中文显示测试
//		OLED_Clear(0); 
//		TEST_BMP();              //BMP单色图片显示测试
//		OLED_Clear(0); 
//		TEST_Menu1();            //菜单1显示测试
//		OLED_Clear(0); 
//		TEST_Menu2();            //菜单2显示测试
//		OLED_Clear(0); 

运行效果:

oled

你可能感兴趣的:(stm32,单片机,嵌入式硬件)